Skip to main content
Log in

Natural convection of nanofluid over vertical plate embedded in porous medium: prescribed surface heat flux

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The aim of the present paper is to analyze the natural convection heat and mass transfer of nanofluids over a vertical plate embedded in a saturated Darcy porous medium subjected to surface heat and nanoparticle fluxes. To carry out the numerical solution, two steps are performed. The governing partial differential equations are firstly simplified into a set of highly coupled nonlinear ordinary differential equations by appropriate similarity variables, and then numerically solved by the finite difference method. The obtained similarity solution depends on four non-dimensional parameters, i.e., the Brownian motion parameter (N b), the Buoyancy ratio (N r), the thermophoresis parameter (N t), and the Lewis number (Le). The variations of the reduced Nusselt number and the reduced Sherwood number with N b and N t for various values of Le and N r are discussed in detail. Simulation results depict that the increase in N b, N t, or N r decreases the reduced Nusselt number. An increase in the Lewis number increases both of the reduced Nusselt number and the Sherwood number. The results also reveal that the nanoparticle concentration boundary layer thickness is much thinner than those of the thermal and hydrodynamic boundary layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

constant from the integration of Eq. (23)

D B :

Brownian diffusion coefficient

D T :

thermophoretic diffusion coefficient

f :

rescaled nanoparticle volume fraction, nanoparticle concentration

g :

gravitational acceleration vector

K :

permeability of the porous medium

k :

thermal conductivity

k m :

effective thermal conductivity

Le :

Lewis number

N b :

Brownian motion parameter

N r :

buoyancy ratio

N t :

thermophoresis parameter

p :

pressure

q np :

nanoparticle flux

q w :

wall heat flux of the vertical plate

Ra x :

local Rayleigh number

S :

dimensionless stream function

T :

temperature

T :

ambient temperature

T w :

wall temperature of the vertical plate

U :

reference velocity

u,v :

Darcy velocity components

x,y :

Cartesian coordinates

(ρc) f :

heat capacity of the fluid

(ρc) p :

effective heat capacity of the nanoparticle material

µ:

viscosity of the fluid

α m :

effective thermal diffusivity defined by Eq. (5)

β :

volumetric expansion coefficient of the fluid

ɛ :

porosity

η :

dimensionless distance defined by Eq. (5)

θ :

dimensionless temperature

λ :

index in the power-law variation of the wall heat and mass flux

ρ f :

fluid density

ρ p :

nanoparticle mass density

τ :

parameter defined by Eq. (5)

ϕ :

nanoparticle volume fraction

ϕ :

ambient nanoparticle volume fraction

ϕ w :

nanoparticle volume fraction at the wall of the vertical plate

ψ :

stream function

References

  1. Gorla, R. S. R., Chamkha, A. J., and Rashad, A. M. Mixed convective boundary layer flow over a vertical wedge embedded in a porous medium saturated with a nanofluid: natural convection dominated regime. Nanoscale Research Letters, 6, 1–9 (2011)

    Article  Google Scholar 

  2. Cheng, P. and Minkowycz, W. J. Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike. Journal of Geophysical Research, 82, 2040–2044 (1977)

    Article  Google Scholar 

  3. Bejan, A. and Khair, K. R. Heat and mass transfer by natural convection in a porous medium. International Journal of Heat and Mass Transfer, 28, 909–918 (1985)

    Article  MATH  Google Scholar 

  4. Kaviany, M. and Mittal, M. An experimental study of vertical plate natural convection in porous media. Heat Transfer in Porous Media and Particulate Flows, 46, 175–179 (1985)

    Google Scholar 

  5. Hassanien, I. A. Variable permeability effects on mixed convection along a vertical wedge embedded in a porous medium with variable surface heat flux. Applied Mathematics and Computation, 138, 41–59 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hsieh, C., Chen, T. S., and Armaly, B. F. Non similarity solutions for mixed convection from vertical surfaces in porous media: variable surface temperature or heat flux. International Journal of Heat and Mass Transfer, 36, 1485–1493 (1993)

    Article  MATH  Google Scholar 

  7. Lee, S., Choi, S. U. S., Li, S., and Eastman, J. A. Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 121, 280–289 (1999)

    Article  Google Scholar 

  8. Wang, X., Xu, X., and Choi, S. U. S. Thermal conductivity of nanoparticle-fluid mixture. Journal of Thermophysics and Heat Transfer, 13, 474–480 (1999)

    Article  Google Scholar 

  9. Li, C. H. and Peterson, G. P. The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids. Journal of Applied Physics, 101, 1–5 (2007)

    Google Scholar 

  10. Saidur, R., Leong, K. Y., and Mohammad, H. A. A review on applications and challenges of nanofluids. Renewable and Sustainable Energy Reviews, 15, 1646–1668 (2011)

    Article  Google Scholar 

  11. Noghrehabadi, A., Behseresht, A., and Ghalambaz, M. Natural convection flow of nanofluids over a vertical cone embedded in a non-Darcy porous medium. Journal of Thermophysics and Heat Transfer, 27, 334–341 (2013)

    Article  Google Scholar 

  12. Noghrehabadi, A., Ghalambaz, M., and Ghanbarzadeh, A. Heat transfer of magnetohydrodynamic viscous nanofluids over an isothermal stretching sheet. Journal of Thermophysics and Heat Transfer, 26, 686–689 (2012)

    Article  Google Scholar 

  13. Noghrehabadi, A., Ghalambaz, M., Ghalambaz, M., and Ghanbarzadeh, A. Comparing thermal enhancement of Ag-water and SiO2-water nanofluids over an isothermal stretching sheet with suction or injection. Journal of Computational and Applied Research in Mechanical Engineering, 2, 35–47 (2012)

    Google Scholar 

  14. Noghrehabadi, A., Pourrajab, R., and Ghalambaz, M. Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature. International Journal of Thermal Science, 54, 253–261 (2012)

    Article  Google Scholar 

  15. Ahmad, S. and Pop, I. Mixed convection boundary layer flow from a vertical flat plate embedded in a porous medium filled with nanofluids. International Communications in Heat and Mass Transfer, 37, 987–991 (2010)

    Article  Google Scholar 

  16. Hady, F. M., Ibrahim, F. S., Abdel-Gaied, S. M., and Eid, M. R. Effect of heat generation/absorption on natural convective boundary-layer flow from a vertical cone embedded in a porous medium filled with a non-Newtonian nanofluid. International Communications in Heat and Mass Transfer, 30, 1414–1420 (2011)

    Article  Google Scholar 

  17. Nield, D. A. and Kuznetsov, A. V. The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. International Journal of Heat and Mass Transfer, 52, 5792–5795 (2009)

    Article  MATH  Google Scholar 

  18. Gorla, R. S. R. and Chamkha, A. J. Natural convective boundary layer flow over a horizontal plate embedded in a porous medium saturated with a nanofluid. Journal of Modern Physics, 2, 62–71 (2011)

    Article  Google Scholar 

  19. Sivasamy, A., Selladuria, V., and Kanna, P. R. Mixed convection on jet impingement cooling of a constant heat flux horizontal porous layer. International Journal of Thermal Science, 49, 1238–1246 (2010)

    Article  Google Scholar 

  20. Keller, H. B. Numerical Solution of Two-Point Boundary Value Problems, University City Science Center, Philadelphia (1976)

    Book  Google Scholar 

  21. Russell, R. D. and Shampine, L. F. A collocation method for boundary value problems. Numerische Mathematik, 19, 1–28 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  22. Buongiorno, J. Convective transport in nanofluids. Journal of Heat Transfer, 128, 240–250 (2006)

    Article  Google Scholar 

  23. Das, S. K., Choi, S. U. S., Yu, W., and Pradeep, T. Nanofluids-Science and Technology, John Wiley & Sons, New Jersey, 1–39 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Noghrehabadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noghrehabadi, A., Behseresht, A. & Ghalambaz, M. Natural convection of nanofluid over vertical plate embedded in porous medium: prescribed surface heat flux. Appl. Math. Mech.-Engl. Ed. 34, 669–686 (2013). https://doi.org/10.1007/s10483-013-1699-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-013-1699-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation