Skip to main content
Log in

Comparative numerical study of single and two-phase models of nanofluid heat transfer in wavy channel

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The main purpose of this study is to survey numerically comparison of two-phase and single phase of heat transfer and flow field of copper-water nanofluid in a wavy channel. The computational fluid dynamics (CFD) prediction is used for heat transfer and flow prediction of the single phase and three different two-phase models (mixture, volume of fluid (VOF), and Eulerian). The heat transfer coefficient, temperature, and velocity distributions are investigated. The results show that the differences between the temperature field in the single phase and two-phase models are greater than those in the hydrodynamic field. Also, it is found that the heat transfer coefficient predicted by the single phase model is enhanced by increasing the volume fraction of nanoparticles for all Reynolds numbers; while for the two-phase models, when the Reynolds number is low, increasing the volume fraction of nanoparticles will enhance the heat transfer coefficient in the front and the middle of the wavy channel, but gradually decrease along the wavy channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c p :

specific heat

C f :

skin friction coefficient

d p :

particle diameter

g :

gravitational acceleration

H :

height of channel

h :

convective heat transfer coefficient

k :

conductivity

L :

length of channel

Nu :

Nusselt number \((\tfrac{{hD_H }} {{K_f }}) \)

Re H :

Reynolds number \((\tfrac{{\rho _f U_{in} D_H }} {{\mu _f }}) \)

S :

surface geometry function

T c :

inlet temperature

T w :

wall temperature

u :

velocity component in X-direction

ρ :

density

V :

velocity

v :

velocity component in Y -direction

β :

thermal expansion coefficient

ϕ :

volume fraction

ν :

kinematic viscosity

µ:

dynamic viscosity

eff:

effective

bf:

base fluid

in:

inlet

m:

mixture

nf:

nanofluid

s:

solid particle

w:

wall

References

  1. Burns, J. C. and Parks, T. A review of steam soak operations in California. Journal of Fluid Mechanics, 29, 405–416 (1967)

    Article  Google Scholar 

  2. Asako, Y. and Faghri, M. Finite volume solutions for laminar flow an heat transfer in a corrugated duct. Journal of Heat Transfer, 109, 627–634 (1987)

    Article  Google Scholar 

  3. Rush, T. A., Newell, T. A., and Jacobi, A. M. An experimental study of flow and heat transfer in sinusoidal wavy passages. International Journal of Heat and Mass Transfer, 42, 1541–1553 (1999)

    Article  Google Scholar 

  4. Wang, C. C., Jang, J. Y., and Chiou, N. F. A heat transfer and friction correlation for wavy fin-and-tube heat exchangers. International Journal of Heat and Mass Transfer, 42, 1919–1924 (1999)

    Article  Google Scholar 

  5. Wang, C. C. and Chen, C. K. Forced convection in a wavy-wall channel. International Journal of Heat and Mass Transfer, 45, 2587–2595 (2002)

    Article  MATH  Google Scholar 

  6. Fabbri, G. Heat transfer optimization in corrugated wall channels. International Journal of Heat and Mass Transfer, 43, 4299–4310 (2000)

    Article  MATH  Google Scholar 

  7. Comini, G., Nonino, C., and Savino, S. Effect of aspect ratio on convection enhancement in wavy channels. Numerical Heat Transfer, Part A, 44, 21–37 (2003)

    Article  Google Scholar 

  8. Nilpueng, K. and Wongwises, S. Flow pattern and pressure drop of vertical upward gas-liquid flow in sinusoidal wavy channels. Experimental Thermal and Fluid Science, 30, 523–534 (2006)

    Article  Google Scholar 

  9. Chang, S. W., William Lees, A., and Chou, T. Heat transfer and pressure drop in furrowed channels with transverse and skewed sinusoidal wavy walls. International Journal of Heat and Mass Transfer, 52, 4592–4603 (2009)

    Article  Google Scholar 

  10. Assato, M. and de Lemos, M. J. S. Turbulent flow in wavy channels simulated with nonlinear models and a new implicit formulation. Numerical Heat Transfer, Part A, 56, 301–324 (2009)

    Article  Google Scholar 

  11. Stone, K. and Vanka, S. P. Numerical study of developing flow and heat transfer in a wavy passage. Journal of Fluids Engineering, 121, 713–719 (1999)

    Article  Google Scholar 

  12. Choi, U. S. Enhancing thermal conductivity of fluids with nanoparticles. ASME FED, 231, 99–103 (1995)

    Google Scholar 

  13. Maxwell, J. C. A Treatise on Electricity and Magnetism, 2nd ed., Cambridge Oxford University Press, Oxford (1904)

    Google Scholar 

  14. Maxwell, J. C. Electricity and Magnetism, Clarendon Press, Oxford (1873)

    Google Scholar 

  15. Lee, S., Choi, S. U. S., Li, S., and Eastman, J. A. Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 121, 280–289 (1999)

    Article  Google Scholar 

  16. Masuda, H., Ebata, A., Teramae, K., and Hishinuma, N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersions of-Al2O3, SiO2, and TiO2 ultra-fine particles) (in Japanese). Netsu Bussei, 4, 227–233 (1993)

    Article  Google Scholar 

  17. Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., and Thompson, L. J. Anomalously increase effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 78(6), 718–720 (2001)

    Article  Google Scholar 

  18. Xuan, Y. and Li, Q. Heat transfer enhancement of nanofluids. International Journal of Heat and Fluid Flow, 21, 58–64 (2000)

    Article  Google Scholar 

  19. Pak, B. C. and Cho, Y. I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer, 11(2), 151–170 (1998)

    Article  Google Scholar 

  20. Wang, X., Xu, X., and Choi, S. U. S. Thermal conductivity of nanoparticles-fluid mixture. Journal of Thermophysics and Heat Transfer, 13(4), 474–480 (1999)

    Article  Google Scholar 

  21. Williams, W., Buongiorno, J., and Hu, L. W. Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes. ASME Journal of Heat Transfer, 130(1), 42412–42419 (2008)

    Article  Google Scholar 

  22. Xuan, Y. and Li, Q. Investigation on convective heat transfer and flow features of nanofluids. Journal of Heat Transfer, 125(1), 151–155 (2003)

    Article  Google Scholar 

  23. Heris, S. Z., Etemad, S. G., and Esfahany, M. N. Experimental investigation of Oxide nanofluids laminar flow convective heat transfer. International Communications in Heat and Mass Transfer, 33, 529–535 (2006)

    Article  Google Scholar 

  24. Heris, S. Z., Esfahany, M. N., and Etemad, S. G. Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. International Journal of Heat and Fluid Flow, 28, 203–210 (2007)

    Article  Google Scholar 

  25. Demir, H., Dalkilic, A. S., Kürekci, N. A., Duangthongsuk, W., and Wongwise, S. Numerical investigation on the single phase forced convection heat transfer characteristics of TiO2 nanofluids in a doubletube counter flow heat exchanger. International Communications in Heat and Mass Transfer, 38, 218–228 (2011)

    Article  Google Scholar 

  26. Ahmed, M. A., Shuaib, N. H., Yusoff, M. Z., and Al-Falahi, A. H. Numerical investigations of flow and heat transfer enhancement in a corrugated channel using nanofluid. International Communications in Heat and Mass Transfer, 38, 1368–1375 (2011)

    Article  Google Scholar 

  27. Santra, A. K., Sen, S., and Chakraborty, N. Study of heat transfer due to laminar flow of copperwater nanofluid through two isothermally heated parallel plates. International Journal of Thermal Science, 48, 391–400 (2009)

    Article  Google Scholar 

  28. Heidary, H. and Kermani, M. J. Effect of nano-particles on forced convection in sinusoidal-wall channel. International Communications in Heat and Mass Transfer, 37, 1520–1527 (2010)

    Article  Google Scholar 

  29. Mirmasoumi, S. and Behzadmehr, A. Numerical study of laminar mixed convection of a nanofluid in a horizontal tube using two-phase mixture model. Applied Thermal Engineering, 28, 717–727 (2008)

    Article  Google Scholar 

  30. Behzadmehr, A., Avval, M. S., and Galanis, N. Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach. International Journal of Heat and Fluid Flow, 28, 211–219 (2007)

    Article  Google Scholar 

  31. Akbari, M., Galanis, N., and Behzadmehr, A. Comparative analysis of single and two-phase models for CFD studies of nanofluid. International Journal of Thermal Sciences and Heat Transfer, 50, 1343–1354 (2011)

    Article  Google Scholar 

  32. Lotfi, R., Saboohi, Y., and Rashidi, A. M. Numerical study of forced convective heat transfer of nanofluids: comparison of different approaches. International Communications in Heat and Mass Transfer, 37, 74–78 (2010)

    Article  Google Scholar 

  33. Buongiorno, J. Convective transport in nanofluid. Journal of Heat Transfer, 128, 240–250 (2006)

    Article  Google Scholar 

  34. Rashidi, M. M., Abelman, S., and Freidoonimehr, N. Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. International Journal of Heat and Mass Transfer, 62, 515–525 (2013)

    Article  Google Scholar 

  35. Rashidi, M. M. and Erfani, E. The modified differential transform method for investigating nano boundary-layers over stretching surfaces. International Journal of Numerical Methods for Heat & Fluid Flow, 21, 864–883 (2011)

    Article  MathSciNet  Google Scholar 

  36. Rashidi, M. M., Freidoonimehr, N., Hosseini, A., Anwar Bég, O., and Hung, T. K. Homotopy simulation of nanofluid dynamics from a non-linearly stretching isothermal permeable sheet with transpiration. Meccanica, 49, 469–482 (2014)

    Article  Google Scholar 

  37. Durst, F., Ray, S., Unsal, B., and Bayoumi, O. A. The development lengths of laminar pipe and channel flows. ASME Journal of Fluid Engineering, 127, 1154–1160 (2005)

    Article  Google Scholar 

  38. Khanafer, K. and Vafai, K. A critical synthesis of thermophysical characteristics of nanofluids. International Journal of Heat and Mass Transfer, 54, 4410–4428 (2011)

    Article  MATH  Google Scholar 

  39. Khanafer, K., Vafai, K., and Lightstone, M. Buoyancy-driven heat transfer enhancement in a two dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer, 46, 3639–3653 (2003)

    Article  MATH  Google Scholar 

  40. Maïgaa, S. B., Palma, S. J., and Nguyena, C. T. Heat transfer enhancement by using nanofluids in forced convection flows. International Journal of Heat and Fluid Flow, 26, 530–546 (2005)

    Article  Google Scholar 

  41. Yu, W. and Choi, S. U. S. The role of interfacial layers in the enhanced thermal of nanofluids: a renovated Maxwell mode. Journal of Nanoparticle Research, 5(1–2), 167–171 (2003)

    Article  Google Scholar 

  42. Manninen, M., Taivassalo, V., and Kallio, S. On the Mixture Model for Multiphase Flow, VTT Publications, Tekniikantie (1996)

    Google Scholar 

  43. Schiller, L. and Naumann, A. A drag coefficient correlation. Zeitschrift Vereines Deutscher Ingenieure, 77, 318–325 (1935)

    Google Scholar 

  44. Drew, D. A. and Lahey, R. T. Particulate Two-phase Flow, Butterworth-Heinemann, Boston (1993)

    Google Scholar 

  45. Ranz, W. E. and Marshall, W. R. Evaporation from drops. Chemical Engineering Progress, 48, 141–146 (1952)

    Google Scholar 

  46. Patankar, S. V. Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, Taylor and Francis Group, New York (1990)

    Google Scholar 

  47. Haghshenas Fard, M., Esfahany, M. N., and Talaie, M. R. Numerical study of convective heat transfer of nanofluids in a circular tube two-phase model versus single-phase model. International Communications in Heat and Mass Transfer, 37, 91–97 (2010)

    Article  Google Scholar 

  48. Kalteh, M., Abbassi, A., Saffar-Aval, M., and Harting, J. Eulerian-Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel. International Journal of Heat and Fluid Flow, 32, 107–116 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Pop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashidi, M.M., Hosseini, A., Pop, I. et al. Comparative numerical study of single and two-phase models of nanofluid heat transfer in wavy channel. Appl. Math. Mech.-Engl. Ed. 35, 831–848 (2014). https://doi.org/10.1007/s10483-014-1839-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-014-1839-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation