Skip to main content
Log in

Dynamic response of axially moving Timoshenko beams: integral transform solution

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The generalized integral transform technique (GITT) is used to find a semianalytical numerical solution for dynamic response of an axially moving Timoshenko beam with clamped-clamped and simply-supported boundary conditions, respectively. The implementation of GITT approach for analyzing the forced vibration equation eliminates the space variable and leads to systems of second-order ordinary differential equations (ODEs) in time. The MATHEMATICA built-in function, NDSolve, is used to numerically solve the resulting transformed ODE system. The good convergence behavior of the suggested eigenfunction expansions is demonstrated for calculating the transverse deflection and the angle of rotation of the beam cross-section. Moreover, parametric studies are performed to analyze the effects of the axially moving speed, the axial tension, and the amplitude of external distributed force on the vibration amplitude of axially moving Timoshenko beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pakdemirli, H. R., Öz, M., and Boyaci, H. Non-linear vibrations and stability of an axially moving beam with time-dependent velocity. International Journal of Non-Linear Mechanics, 36(1), 107–115 (2001)

    Article  MATH  Google Scholar 

  2. Yang, X. D. and Chen, L. Q. Dynamic stability of axially moving viscoelastic beams with pulsating speed. Appl. Math. Mech. -Engl. Ed., 26(8), 989–995 (2005) DOI 10.1007/BF02466411

    Article  MATH  Google Scholar 

  3. Lee, U. and Oh, H. Dynamics of an axially moving viscoelastic beam subject to axial tension. International Journal of Solids and Structures, 42(8), 2381–2398 (2005)

    Article  MATH  Google Scholar 

  4. Liu, K. F. and Deng, L. Y. Identification of pseudo-natural frequencies of an axially moving cantilever beam using a subspace-based algorithm. Mechanical Systems and Signal Processing, 20(1), 94–113 (2006)

    Article  MathSciNet  Google Scholar 

  5. Chen, L. Q. and Yang, X. D. Nonlinear free transverse vibration of an axially moving beam: comparison of two models. Journal of Sound and Vibration, 299(1–2), 348–354 (2007)

    Article  MATH  Google Scholar 

  6. Jakšić, N. Numerical algorithm for natural frequencies computation of an axially moving beam model. Meccanica, 44(6), 687–695 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ponomareva, S. V. and van Horssen, W. T. On the transversal vibrations of an axially moving continuum with a time-varying velocity: transient from string to beam behavior. Journal of Sound and Vibration, 325(4–5), 959–973 (2009)

    Article  Google Scholar 

  8. Chang, J. R., Lin, W. J., Huang, C. J., and Choi, S. T. Vibration and stability of an axially moving rayleigh beam. Applied Mathematical Modelling, 34(6), 1482–1497 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Huang, J. L., Su, R. K. L., Li, W. H., and Chen, S. H. Stability and bifurcation of an axially moving beam tuned to three-to-one internal resonances. Journal of Sound and Vibration, 330(3), 471–485 (2011)

    Article  Google Scholar 

  10. Wang, B. Asymptotic analysis on weakly forced vibration of axially moving viscoelastic beam constituted by standard linear solid model. Appl. Math. Mech. -Engl. Ed., 33(6), 817–828 (2012) DOI 10.1007/s10483-012-1588-8

    Article  MathSciNet  Google Scholar 

  11. Marynowski, K. Dynamic analysis of an axially moving sandwich beam with viscoelastic core. Composite Structures, 94(9), 2931–2936 (2012)

    Article  Google Scholar 

  12. Lee, U., Kim, J., and Oh, H. Spectral analysis for the transverse vibration of an axially moving Timoshenko beam. Journal of Sound and Vibration, 271(3–5), 685–703 (2004)

    Article  MATH  Google Scholar 

  13. Cojocaru, E. C., Irschik, H., and Schlacher, K. Concentrations of pressure between an elastically supported beam and a moving Timoshenko-beam. Journal of Engineering Mechanics-ASCE, 129(9), 1076–1082 (2003)

    Article  Google Scholar 

  14. Yang, X. D., Tang, Y. Q., Chen, L. Q., and Lim, C. W. Dynamic stability of axially accelerating Timoshenko beam: averaging method. European Journal of Mechanics A-Solids, 29(1), 81–90 (2010)

    Article  MathSciNet  Google Scholar 

  15. Tang, Y. Q., Chen, L. Q., and Yang, X. D. Natural frequencies, modes and critical speeds of axially moving Timoshenko beams with different boundary conditions. International Journal of Mechanical Sciences, 50(10–11), 1448–1458 (2008)

    Article  MATH  Google Scholar 

  16. Tang, Y. Q., Chen, L. Q., and Yang, X. D. Parametric resonance of axially moving Timoshenko beams with time-dependent speed. Nonlinear Dynamics, 58(4), 715–724 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tang, Y. Q., Chen, L. Q., and Yang, X. D. Nonlinear vibrations of axially moving Timoshenko beams under weak and strong external excitations. Journal of Sound and Vibration, 320(4–5), 1078–1099 (2009)

    Article  Google Scholar 

  18. Li, B., Tang, Y. Q., and Chen, L. Q. Nonlinear free transverse vibrations of axially moving Timoshenko beams with two free ends. Science China-Technological Sciences, 54(8), 1966–1976 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tang, Y. Q., Chen, L. Q., Zhang, H. J., and Yang, S. P. Stability of axially accelerating viscoelastic Timoshenko beams: recognition of longitudinally varying tensions. Mechanism and Machine Theory, 62, 31–50 (2013)

    Article  Google Scholar 

  20. Ghayesh, M. H. and Balar, S. Non-linear parametric vibration and stability analysis for two dynamic models of axially moving Timoshenko beams. Applied Mathematical Modelling, 34(10), 2850–2859 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ghayesh, M. H. and Amabili, M. Three-dimensional nonlinear planar dynamics of an axially moving Timoshenko beam. Archive of Applied Mechanics, 83(4), 591–604 (2013)

    Article  MATH  Google Scholar 

  22. Cotta, R. M. Integral Transforms in Computational Heat and Fluid Flow, CRC Press, Boca Raton (1993)

    MATH  Google Scholar 

  23. Cotta, R. M. and Mikhailov, M. D. Heat Conduction—Lumped Analysis, Integral Transforms, Symbolic Computation, John Wiley & Sons, Chichester, England (1997)

    Google Scholar 

  24. Cotta, R. M. The Integral Transform Method in Thermal and Fluids Science and Engineering, Begell House, New York (1998)

    MATH  Google Scholar 

  25. An, C., Gu, J. J., and Su, J. Integral transform solution of bending problem of clamped orthotropic rectangular plates. International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Rio de Janeiro, Brazil (2011)

    Google Scholar 

  26. Ma, J. K., Su, J., Lu, C. H., and Li, J. M. Integral transform solution of the transverse vibration of an axial moving string. Journal of Vibration, Measurement & Diagnosis, 26(117), 104–107 (2006)

    Google Scholar 

  27. An, C. and Su, J. Dynamic response of clamped axially moving beams: integral transform solution. Applied Mathematics and Computation, 218(2), 249–259 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gu, J. J., An, C., Duan, M. L., Levi, C., and Su, J. Integral transform solutions of dynamic response of a clamped-clamped pipe conveying fluid. Nuclear Engineering and Design, 254, 237–245 (2013)

    Article  Google Scholar 

  29. Gu, J. J., An, C., Levi, C., and Su, J. Prediction of vortex-induced vibration of long flexible cylinders modeled by a coupled nonlinear oscillator: integral transform solution. Journal of Hydrodynamics, 24(6), 888–898 (2012)

    Article  Google Scholar 

  30. Wolfram, S. The Mathematica Book, 5th ed., Wolfram Media/Cambridge University Press, Champaign (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Su  (苏 健).

Additional information

Project supported by the Science Foundation of China University of Petroleum in Beijing (No. 2462013YJRC003)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, C., Su, J. Dynamic response of axially moving Timoshenko beams: integral transform solution. Appl. Math. Mech.-Engl. Ed. 35, 1421–1436 (2014). https://doi.org/10.1007/s10483-014-1879-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-014-1879-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation