Skip to main content
Log in

Entropy analysis of unsteady magneto-nanofluid flow past accelerating stretching sheet with convective boundary condition

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The unsteady laminar magnetohydrodynamics (MHD) boundary layer flow and heat transfer of nanofluids over an accelerating convectively heated stretching sheet are numerically studied in the presence of a transverse magnetic field with heat source/sink. The unsteady governing equations are solved by a shooting method with the Runge-Kutta-Fehlberg scheme. Three different types of water based nanofluids, containing copper, aluminium oxide, and titanium dioxide, are taken into consideration. The effects of the pertinent parameters on the fluid velocity, the temperature, the entropy generation number, the Bejan number, the shear stress, and the heat transfer rate at the sheet surface are graphically and quantitatively discussed in detail. A comparison of the entropy generation due to the heat transfer and the fluid friction is made with the help of the Bejan number. It is observed that the presence of the metallic nanoparticles creates more entropy in the nanofluid flow than in the regular fluid flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choi, S. U. S. Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows. ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineering, San Francisco (1995)

    Google Scholar 

  2. Nguyen, C. T., Roy, G., Gauthier, C., and Galanis, N. Heat transfer enhancement using Al2O3ater nanofluid for an electronic liquid cooling system. Applied Thermal Engineering, 27, 1501–1506 (2007)

    Article  Google Scholar 

  3. Akbarinia, A., Abdolzadeh, M., and Laur, R. Critical investigation of heat transfer enhancement using nanofluids in microchannels with slip and non-slip flow regimes. Applied Thermal Engineering, 31, 556–565 (2011)

    Article  Google Scholar 

  4. Kiblinski, P., Phillpot, S. R., Choi, S. U. S., and Eastman, J. A. Mechanism of heat flow is suspensions of nano-sized particles (nanofluids). International Journal of Heat and Mass Transfer, 42, 855–863 (2002)

    Article  Google Scholar 

  5. Wang, X., Xu, X., and Choi, S. U. S. Thermal conductivity of nanoparticle fluid mixture. Journal of Thermophysics and Heat Transfer, 13, 474–480 (1999)

    Article  Google Scholar 

  6. Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., and Thompson, L. J. Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 78, 718–720 (2001)

    Article  Google Scholar 

  7. Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E., and Grulke, E. A. Anomalously thermal conductivity enhancement in nanotube suspensions. Applied Physics Letters, 79, 2252–2254 (2001)

    Article  Google Scholar 

  8. Hassani, M., Tabar, M. M., Nemati, H., Domairry, G., and Noori, F. An analytical solution for boundary layer flow of a nanofluid past a stretching sheet. International Journal of Thermal Sciences, 50, 2256–2263 (2011)

    Article  Google Scholar 

  9. Rana, P. and Bhargava, R. Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: a numerical study. Communications in Nonlinear Science and Numerical Simulation, 17, 212–226 (2012)

    Article  MathSciNet  Google Scholar 

  10. Khan, W. A. and Pop, I. Boundary-layer flow of a nanofluid past a stretching sheet. International Journal of Heat and Mass Transfer, 53, 2477–2483 (2010)

    Article  MATH  Google Scholar 

  11. Sun, C., Lu, W. Q., Bai, B., and Liu, J. Anomalous enhancement in thermal conductivity of nanofluid induced by solid walls in a nanochannel. Applied Thermal Engineering, 31, 3799–3805 (2011)

    Article  Google Scholar 

  12. Nam, J. S., Lee, P. H., and Lee, S. W. Experimental characterization of micro-drilling process using nanofluid minimum quantity lubrication. International Journal of Machine Tools and Manufacture, 51, 649–652 (2011)

    Article  Google Scholar 

  13. Buongiorno, J. Convective transport in nanofluids. ASME Journal of Heat Transfer, 128, 240–250 (2006)

    Article  Google Scholar 

  14. Kakac, S. and Pramuanjaroenkij, A. Review of convective heat transfer enhancement with nanofluids. International Journal of Heat and Mass Transfer, 52, 3187–3196 (2009)

    Article  MATH  Google Scholar 

  15. Sakiadis, B. C. Boundary layer behaviour on continuous solid surfaces: I, boundary layer on a continuous flat surface. AIChE Journal, 7, 221–225 (1961)

    Article  Google Scholar 

  16. Crane, L. Flow past a stretching plate. The Journal of Applied Mathematics and Physics, 21, 645–647 (1970)

    Article  Google Scholar 

  17. Khan, W. A. and Pop, I. Boundary-layer flow of a nanofluid past a stretching sheet. International Journal of Heat and Mass Transfer, 53, 2477–2483 (2010)

    Article  MATH  Google Scholar 

  18. Yacob, N. A., Ishak, A., Pop, I., and Vajravelu, K. Boundary layer flow past a stretching/shrinking surface beneath an external uniform shear flow with a convective surface boundary condition in a nanofluid. Nanoscale Research Letters, 6, 314 (2011)

    Article  Google Scholar 

  19. Makinde, O. D. and Aziz, A. Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. International Journal of Thermal Sciences, 50, 1326–1332 (2011)

    Article  Google Scholar 

  20. Pal, D. Combined effects of non-uniform heat source/sink and thermal radiation on heat transfer over an unsteady stretching permeable surface. Communications in Nonlinear Science and Numerical Simulation, 16, 1890–1904 (2011)

    Article  Google Scholar 

  21. Makinde, O. D. and Aziz, A. Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. International Journal of Thermal Sciences, 50, 1326–1332 (2011)

    Article  Google Scholar 

  22. Ahmad, S., Rohni, A. M., and Pop, I. Blasius and Sakiadis problems in nanofluids. Acta Mechanica, 218, 195–204 (2011)

    Article  MATH  Google Scholar 

  23. Uddin, M. J., Khan, W. A., and Ismail, A. I. M. Scaling group transformation for MHD boundary layer slip flow of a nanofluid over a convectively heated stretching sheet with heat generation. Mathematical Problems in Engineering, 2012, 934964 (2012)

    Article  MathSciNet  Google Scholar 

  24. Alsaedi, A., Awais, M., and Hayat, T. Effects of heat generation/absorption on stagnation point flow of nanofluid over a surface with convective boundary conditions. Communications in Nonlinear Science and Numerical Simulation, 17, 4210–4223 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ibrahim, W. and Shankar, B. Unsteady MHD boundary-layer flow and heat transfer due to stretching sheet in presence of heat source and sink. Computers and Fluids, 70, 21–28 (2012)

    Article  MathSciNet  Google Scholar 

  26. Ibrahim, W. and Shankar, B. Unsteady MHD boundary-layer flow and heat transfer due to stretching sheet in presence of heat source and sink by quaslinearization technique. International Journal of Applied Mathematics and Mechanics, 8, 18–30 (2012)

    Google Scholar 

  27. Ibrahim, W. and Shankar, B. MHD boundary layer flow and heat transfer of a nanofluid past a permeable stretching sheet with velocity, thermal and solutal slip boundary conditions. Computers and Fluids, 75, 1–10 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. Shankar, B. and Yirga, Y. Unsteady heat and mass transfer in MHD flow of nanofluids over stretching sheet with a non-uniform heat source/sink. International Journal of Mathematical, Computational Science and Engineering, 7, 1267–1275 (2013)

    Google Scholar 

  29. Das, K. Lie group analysis for nanofluid flow past a convectively heated stretching surface. Applied Mathematics and Computation, 221, 547–557 (2013)

    Article  MathSciNet  Google Scholar 

  30. Olanrewaju, A. M. and Makinde, O. D. On boundary layer stagnation point flow of a nanofluid over a permeable flat surface with Newtonian heating. Chemical Engineering Communications, 200, 836–852 (2013)

    Article  Google Scholar 

  31. Makinde, O. D., Khan, W. A., and Khan, Z. H. Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet. International Journal of Heat and Mass Transfer, 62, 526–533 (2013)

    Article  Google Scholar 

  32. Rahman, M. M. and Eltayeb, I. A. Radiative heat transfer in a hydromagnetic nanofluid past a non-linear stretching surface with convective boundary condition. Meccanica, 48, 601–615 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  33. Mutuku, W. N. and Makinde, O. D. MHD nanofluid flow over a permeable vertical plate with convective heating. Journal of Computational and Theoretical Nanoscience, 11, 667–675 (2014)

    Article  Google Scholar 

  34. Mutuku, W. N. and Makinde, O. D. Hydromagnetic bioconvection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms. Computers and Fluids, 95, 88–97 (2014)

    Article  MathSciNet  Google Scholar 

  35. Hajmohammadi, M. R. and Nourazar, S. S. On the insertion of a thin gas layer in micro cylindrical Couette flows involving power-law liquids, International Journal of Heat and Mass Transfer, 75, 97–108 (2014)

    Article  Google Scholar 

  36. Hajmohammadi, M. R. and Nourazar, S. S. Analytical solution for two-phase flow between two rotating cylinders filled with power law liquid and a micro layer of gas. Journal of Mechanical Science and Technology, 28, 1849–1854 (2014)

    Article  Google Scholar 

  37. Freidoonimehr, N., Rashidi, M. M., and Mahmud, S. Unsteady MHD free convective flow past a permeable stretching vertical surface in a nano-fluid. International Journal of Thermal Sciences, 87, 136–145 (2015)

    Article  Google Scholar 

  38. Hajmohammadi, M. R., Maleki, H., Lorenzini, G., and Nourazar, S. S. Effects of Cu and Ag nano-particles on flow and heat transfer from permeable surfaces. Advanced Powder Technology, 26, 193–199 (2015)

    Article  Google Scholar 

  39. Arikoglu, A., Ozkol, I., and Komurgoz, G. Effect of slip on entropy generation in a single rotating disk in MHD flow. Applied Energy, 85, 1225–1236 (2008)

    Article  Google Scholar 

  40. Adboud, S. and Saouli, S. Entropy analysis for viscoelastic magneto hydrodynamic flow over a stretching surface. International Journal of Non-Linear Mechanics, 45, 482–489 (2010)

    Article  Google Scholar 

  41. Makinde, O. D. Entropy analysis for MHD boundary layer flow and heat transfer over a flat plate with a convective surface boundary condition. International Journal of Exergy, 10, 142–154 (2012)

    Article  Google Scholar 

  42. Rashidi, M. M., Abelman, S., and Freidoonimehr, N. Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. International Journal of Heat and Mass Transfer, 62, 515–525 (2013)

    Article  Google Scholar 

  43. Butt, A. S. and Ali, A. Effects of magnetic field on entropy generation in flow and heat transfer due to a radially stretching surface. Chinese Physics Letters, 30, 024701 (2013)

    Article  Google Scholar 

  44. Malvandi, A., Ganji, D. D., Hedayati, F., and Yousefi-Rad, E. An analytical study on entropy generation of nanofluids over a flat plate. Alexandria Engineering Journal, 52, 595–604 (2013)

    Article  Google Scholar 

  45. Rashidi, M. M., Beg, O. A., Mehr, N. F., and Rostami, B. Second law analysis of hydromagnetic flow from a stretching rotating disk: DTM-Pade simulation of novel nuclear MHD propulsion systems. Frontiers in Aerospace Engineering, 2, 29–38 (2013)

    Google Scholar 

  46. Shateyi, S. and Makinde, O. D. Hydromagnetic stagnation-point flow towards a radially stretching convectively heated disk. Mathematical Problems in Engineering, 2013, 1–8 (2013)

    Google Scholar 

  47. Butt, A. S. and Ali, A. Entropy analysis of flow and heat transfer caused by a moving plate with thermal radiation. Journal of Mechanical Science and Technology, 28, 343–348 (2014)

    Article  Google Scholar 

  48. Butt, A. S. and Ali, A. A computational study of entropy generation in magnetohydrodynamic flow and heat transfer over an unsteady stretching permeable sheet. The European Physical Journal Plus, 129, 1–13 (2014)

    Article  Google Scholar 

  49. Butt, A. S. and Ali, A. Entropy analysis of magnetohydrodynamic flow and heat transfer over a convectively heated radially stretching surface. Journal of Taiwan Institute of Chemical Engineers, 45, 1197–1203 (2014)

    Article  Google Scholar 

  50. Butt, A. S. and Ali, A. A computational study of entropy generation in magnetohydrodynamic flow and heat transfer over an unsteady stretching permeable sheet. The European Physical Journal Plus, 129, 1–13 (2014)

    Article  Google Scholar 

  51. Abolbashari, M. H., Freidoonimehr, N., Nazari, F., and Rashidi, M. M. Entropy analysis for an unsteady MHD flow past a stretching permeable surface in nano-fluid. Powder Technology, 267, 256–267 (2014)

    Article  Google Scholar 

  52. Cramer, K. R. and Pai, S. I. Magnetofluid Dynamics for Engineers and Applied Physicists, McGraw-Hill, New York (1973)

    Google Scholar 

  53. Oztop, H. F. and Abu-Nada, E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International Journal of Heat and Fluid Flow, 29, 1326–1336 (2008)

    Article  Google Scholar 

  54. Prakash, D., Muthtamilselvan, M., and Deog-Hee, D. Unsteady MHD non-Darcian flow over a vertical stretching plate embedded in a porous medium with non-uniform heat generation. Applied Mathematics and Computation, 236, 480–492 (2014)

    Article  MathSciNet  Google Scholar 

  55. Oztop, H. F. and Abu-Nada, E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International Journal of Heat and Fluid Flow, 29, 1326–1336 (2009)

    Article  Google Scholar 

  56. Na, T. Y. Computational Method in Engineering Boundary Value Problems, Academic Press, New York (1974)

    Google Scholar 

  57. Khan, Z. H., Gul, R., and Khan, W. A. Effect of variable thermal conductivity on heat transfer from a hollow sphere with heat generation using homotopy perturbation method. ASME 2008 Heat Transfer Summer Conference Collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences, Jacksonville, Florida (2008)

    Google Scholar 

  58. Gul, R., Khan, Z. H., and Khan, W. A. Heat transfer from solids with variable thermal conductivity and uniform internal heat generation using homotopy perturbation method. ASME 2008 Heat Transfer Summer Conference Collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences, Jacksonville, Florida (2008)

    Google Scholar 

  59. Hajmohammadi, M. R., Nourazar, S. S., and Manesh, A. H. Semi-analytical treatments of conjugate heat transfer. Journal of Mechanical Engineering Science, 227, 492–503 (2012)

    Article  Google Scholar 

  60. Hajmohammadi, M. R. and Nourazar, S. S. On the solution of characteristic value problems arising in linear stability analysis: semi analytical approach. Applied Mathematics and Computation, 239, 126–132 (2014)

    Article  MathSciNet  Google Scholar 

  61. Hajmohammadi, M. R. and Nourazar, S. S. Conjugate forced convection heat transfer from a heated flat plate of finite thickness and temperature-dependent thermal conductivity. Heat Transfer Engineering, 35, 863–874 (2014)

    Article  Google Scholar 

  62. Woods, L. C. Thermodynamics of Fluid Systems, Oxford University Press, Oxford (1975)

    Google Scholar 

  63. Paoletti, S., Rispoli, F., and Sciubba, E. Calculation of exergetic losses in compact heat exchanger passages. ASME Advanced Energy Systems, 10, 21–29 (1989)

    Google Scholar 

  64. Cimpean, D., Lungu, N., and Pop, I. A problem of entropy generation in a channel filled with a porous medium. Creative Mathematics and Informatics, 17, 357–362 (2008)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Chakraborty, S., Jana, R.N. et al. Entropy analysis of unsteady magneto-nanofluid flow past accelerating stretching sheet with convective boundary condition. Appl. Math. Mech.-Engl. Ed. 36, 1593–1610 (2015). https://doi.org/10.1007/s10483-015-2003-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-015-2003-6

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation