Skip to main content
Log in

Lattice Boltzmann simulation of MHD natural convection in a cavity with porous media and sinusoidal temperature distribution

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The lattice Boltzmann method (LBM) is used to simulate the effect of magnetic field on the natural convection in a porous cavity. The sidewalls of the cavity are heated sinusoidally with a phase derivation, whereas the top and bottom walls are thermally insulated. Numerical simulation is performed, and the effects of the pertinent parameters, e.g., the Hartmann number, the porosity, the Darcy number, and the phase deviation, on the fluid flow and heat transfer are investigated. The results show that the heat transfer is affected by the temperature distribution on the sidewalls clearly. When the Hartmann number is 0, the maximum average Nusselt number is obtained at the phase deviation 90°. Moreover, the heat transfer enhances when the Darcy number and porosity increase, while decreases when the Hartman number increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DAVIS, D. V. Natural convection of air in a square cavity: a benchmark numerical solution. International Journal of Numerical Methods in Fluids, 3, 249–264 (1983)

    Article  MATH  Google Scholar 

  2. OSTRACH, S. Natural convection in enclosures. Journal of Heat Transfer, 110, 1175–1190 (1988)

    Article  Google Scholar 

  3. CHENG, P. Heat transfer in geothermal systems. Advances in Heat Transfer, 14, 1–105 (1979)

    Article  Google Scholar 

  4. NIELD, D. A. and BEJAN, A. Convection in Porous Media, Springer, New York (2006)

    MATH  Google Scholar 

  5. AL-NIMR, M. A. and HADER, M. A. MHD free convection flow in open-ended vertical porous channels. Chemical Engineering Science, 54, 1883–1889 (1999)

    Article  Google Scholar 

  6. NIELD, D. A. Impracticality of MHD convection in a porous medium. Transport in Porous Media, 73, 379–380 (2008)

    Article  MathSciNet  Google Scholar 

  7. GHASEMI, B., AMINOSSADATI, S. M., and RAISI, A. Magnetic field effect on natural convection in a nanofluid-filled square enclosure. International Journal of Thermal Sciences, 50, 1748–1756 (2011)

    Article  Google Scholar 

  8. RAHMAN, M. M., HAKAN, F., ÖZTOP, H. A., AHSAN, A., KALAM, M. A., and BILLAH, M. M. MHD mixed convection in a channel with a triangular cavity. Numerical Heat Transfer, Part A, 61, 268–282 (2012)

    Article  Google Scholar 

  9. KEFAYATI, G. R. Simulation of magnetic field effect on non-Newtonian blood flow between two-square concentric duct annuli using FDLBM. Journal of the Taiwan Institute of Chemical Engineers, 45, 1184–1196 (2014)

    Article  Google Scholar 

  10. KEFAYATI, G. R. Mesoscopic simulation of double-diffusive mixed convection of pseudoplastic fluids in an enclosure with sinusoidal boundary conditions. Computers and Fluids, 97, 94–109 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. ATA, A., SERVATI, V., JAVAHERDEH, K., and ASHORYNEJAD, H. R. Magnetic field effects on force convection flow of a nanofluid in a channel partially filled with porous media using lattice Boltzmann method. Advanced Powder Technology, 25, 666–675 (2014)

    Article  Google Scholar 

  12. KEFAYATI, G. R. Mesoscopic simuation of magnetic field effect on natural convection of powerlaw fluids in a partially heated cavity. Chemical Engineering Research and Design, 94, 337–354 (2015)

    Article  Google Scholar 

  13. RAHMATI, A. R. and NAJJARNEZAMI, A. A double multi-relaxation-time lattice Boltzmann method for simulation of magnetohydrodynamics natural convection of nanofluid in a square cavity. Journal of Applied Fluid Mechanics, 9, 1201–1214 (2016)

    Article  Google Scholar 

  14. AHMED, S. E. and MAHDY, A. Laminar MHD natural convection of nanofluid containing gyrotactic microorganisms over vertical wavy surface saturated non-Darcian porous media. Applied Mathematics and Mechanics (English Edition), 37(4), 471–484 (2016) https://doi.org/10.1007/s10483-016-2044-9

    Article  MathSciNet  Google Scholar 

  15. CHATTERJEE, D. and GUPTA, S. K. Magnetohydrodynamic natural convection in a square enclosure with four circular cylinders positioned at different rectangular locations. Heat Transfer Engineering, 38, 1449–1465 (2017)

    Article  Google Scholar 

  16. PANGRLE, B. J., WALSH, E. G., MOORE, S. C., and DIBIASIO’O, D. Magnetic resonance imaging of laminar flow in porous tube and shell systems. Chemical Engineering Science, 47, 517–526 (1992)

    Article  Google Scholar 

  17. SATHIYAMOORTHY, M., BASAK, T., POP, I., and ROY, S. Steady natural convection flow in a square cavity filled with a porous medium for linearly heated side walls. International Journal of Heat and Mass Transfer, 50, 1892–1901 (2007)

    Article  MATH  Google Scholar 

  18. SHEIKHZADEH, G. and NAZARI, S. Numerical study of natural convection in a square cavity filled with a porous medium saturated with nanofluid. Transport Phenomena in Nano and Micro Scales, 1, 138–146 (2013)

    Google Scholar 

  19. FRISCH, U., HASSLACHER, B., and POMEAU, Y. Lattice-gas automata for the Navier-Stokes equation. Physical Review Letters, 56, 1505–1508 (1986)

    Article  Google Scholar 

  20. SUCCI, S., FOTI, E., and HIGUERA, F. Three-dimensional flows in complex geometries with the lattice Boltzmann method. Europhysics Letters, 10, 433–438 (1989)

    Article  Google Scholar 

  21. HE, Y. L., WANG, Y., and LI, Q. Lattice Boltzmann Method: Theory and Applications, Science Press, Beijing (2009)

    Google Scholar 

  22. GONG, S. and CHENG, P. Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling. International Journal of Heat and Mass Transfer, 64, 122–132 (2013)

    Article  Google Scholar 

  23. NAZARI, M., SHOKRI, H., and MOHAMMAD, A. A. Lattice Boltzmann simulation of natural convection in open end cavity with inclined hot wall. Applied Mathematics and Mechanics (English Edition), 36(4), 523–540 (2015) https://doi.org/10.1007/s10483-015-1928-9

    Article  MathSciNet  Google Scholar 

  24. XU, A., SHI, L., and ZHAO, T. S. Accelerated lattice Boltzmann simulation using GPU and OpenACC with data management. International Journal of Heat and Mass Transfer, 109, 577–588 (2017)

    Article  Google Scholar 

  25. TANG, G. H., TAO, W. Q., and HE, Y. L. Gas slippage effect on microscale porous flow using the lattice Boltzmann method. Physical Review E, 72, 056301 (2005)

    Article  Google Scholar 

  26. KANG, Q. J., LICHTNER, P. C., and ZHANG, D. X. An improved lattice Boltzmann model for multicomponent reactive transport in porous media at the pore scale. Water Resources Research, 43, 2578–2584 (2007)

    Article  Google Scholar 

  27. KANG, Q., ZHANG, D., and CHEN, S. Unified lattice Boltzmann method for flow in multiscale porous media. Physical Review E, 66, 056307 (2002)

    Article  Google Scholar 

  28. GUO, Z. and ZHAO, T. S. Lattice Boltzmann model for incompressible flows through porous media. Physical Review E, 66, 036304 (2002)

    Article  Google Scholar 

  29. GUO, Z. and ZHAO, T. S. A lattice Boltzmann model for convection heat transfer in porous media. Numerical Heat Transfer B, 47, 157–177 (2005)

    Article  Google Scholar 

  30. DARDIS, O. and MCCLOSKEY, J. Lattice Boltzmann scheme with real numbered solid density for the simulation of flow in porous media. Physical Review E, 57, 4834–4837 (1998)

    Article  Google Scholar 

  31. XU, A., SHYY, W., and ZHAO, T. Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries. Acta Mechanica Sinica, 33, 555–574 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. SETA, T., TAKEGOSHI, E., and OKUI, K. Lattice Boltzmann simulation of natural convection in porous media. Mathematics and Computer in Simulation, 72, 195–200 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. MEHRIZI, A., SEDIGHI, K., and HASSANZADE, H. Lattice Boltzmann simulation of force convection in vented cavity filled by porous medium with obstruction. World Applied Science Journal, 16, 31–36 (2012)

    Google Scholar 

  34. ASHORYNEJAD, H. A., FARHADI, M., SEDIGHI, K., and HASANPOUR, A. Free convection in a MHD porous cavity with using lattice Boltzmann method. World Academy of Science, Engineering and Technology, 73, 735 (2011)

    Google Scholar 

  35. LIU, Q. and HE, Y. L. Lattice Boltzmann simulations of convection heat transfer in porous media. Physica A: Statistical Mechanics and Its Applications, 465, 742–753 (2017)

    Article  MathSciNet  Google Scholar 

  36. CRAMER, K. R. and PAI, S. I. Magnatofluid Dynamics for Engineers and Physicists, McGraw-Hill, New York (1973)

    Google Scholar 

  37. IRWAN, M. and AZWADI, C. Simplified mesoscale lattice Boltzmann numerical model for predication of natural convection in a square enclosure filled with homogeneous porous media. Wseas Transactions on Fluid Mechanics, 5, 186–195 (2010)

    Google Scholar 

  38. KEFAYATI, G. R. Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with sinusoidal temperature distribution. Powder Technology, 243, 171–183 (2013)

    Article  Google Scholar 

  39. SIVARAJ, C. and SHEREMET, M. A. MHD natural convection in an inclined square porous cavity with a heat conducting solid block. Journal of Magnetism and Magnetic Materials, 426, 351–360 (2017)

    Article  Google Scholar 

  40. MOHAMAD, A. Lattice Boltzmann Method, Springer, New York (2011)

    Book  MATH  Google Scholar 

  41. MEJRI, I., MAHMOUDI, A., ABBASSI, M. A., and OMRI, A. MHD natural convection in a nanofluid-filled rnclosure with non-uniform heating on both side walls. Fluid Dynamics and Materials Processing, 10, 83–114 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Javaherdeh.

Additional information

Citation: JAVAHERDEH, K. and NAJJARNEZAMI, A. Lattice Boltzmann simulation of MHD natural convection in a cavity with porous media and sinusoidal temperature distribution. Applied Mathematics and Mechanics (English Edition), 39(8), 1187–1200 (2018) https://doi.org/10.1007/s10483-018-2353-6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javaherdeh, K., Najjarnezami, A. Lattice Boltzmann simulation of MHD natural convection in a cavity with porous media and sinusoidal temperature distribution. Appl. Math. Mech.-Engl. Ed. 39, 1187–1200 (2018). https://doi.org/10.1007/s10483-018-2353-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-018-2353-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation