Skip to main content

Advertisement

Log in

Numerical simulation of MHD natural convection flow in a wavy cavity filled by a hybrid Cu-Al2O3-water nanofluid with discrete heating

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

We consider the combined effect of the magnetic field and heat transfer inside a square cavity containing a hybrid nanofluid (Cu-Al2O3-water). The upper and bottom walls of the cavity have a wavy shape. The temperature of the vertical walls is lower, the third part in the middle of the bottom wall is kept at a constant higher temperature, and the remaining parts of the bottom wall and the upper wall are thermally insulated. The magnetic field is applied under the angle γ, an opposite clockwise direction. For the numerical simulation, the finite element technique is employed. The ranges of the characteristics are as follows: the Rayleigh number (103Ra ⩽ 105), the Hartmann number (0 ⩽ Ha ⩽ 100), the nanoparticle hybrid concentration (ϕAl2o3, ϕCu = 0, 0.025, 0.05), the magnetic field orientation (0 ⩽ γ ⩽ 2π), and the Prandtl number Pr, the amplitude of wavy cavity A, and the number of waviness n are fixed at Pr = 7, A = 0.1, and n = 3, respectively. The comparison with a reported finding in the open literature is done, and the data are observed to be in very good agreement. The effects of the governing parameters on the energy transport and fluid flow parameters are studied. The results prove that the increment of the magnetic influence determines the decrease of the energy transference because the conduction motion dominates the fluid movement. When the Rayleigh number is raised, the Nusselt number is increased, too. For moderate Rayleigh numbers, the maximum ratio of the heat transfer takes place for the hybrid nanofluid and then the Cu-nanofluid, followed by the Al2O3-nanofluid. The nature of motion and energy transport parameters has been scrutinized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHOI, S. U. S. and EASTMAN, J. A. Enhancement thermal conductivity of fluids with nanoparticles. Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, 66, 99–105 (1995)

  2. DAS, S. K., CHOI, S. U. S., YU, W., and PRADEEP, Y. Nanofluids: Science and Technology, Wiley, New Jersey (2008)

    Google Scholar 

  3. MINKOWYCZ, W. J., SPARROW, E. M., and ABRAHAM, J. P. Nanoparticle Heat Transfer and Fluid Flow, CRC Press, Taylor & Francis Group, Boca Raton (2013)

    Google Scholar 

  4. SHENOY, A., SHEREMET, M., and POP, I. Convective Flow and Heat Transfer from Wavy Surfaces: Viscous Fluids, Porous Media and Nanofluids, CRC Press, Taylor & Francis Group, New York (2016)

    Book  Google Scholar 

  5. NIELD, D. A. and BEJAN, A. Convection in Porous Media, 5th ed., Springer, New York (2017)

    Book  Google Scholar 

  6. BUONGIORNO, J., VENERUS, D. C., PRABHAT, N., MCKRELL, T., TOWNSEND, J., CHRISTIANSON, R., TOLMACHEV, Y. V., KEBLINSKI, P., HU, L., ALVARADO, J. L., BANG, I. C., BISHNOI, S. W., BONETTI, M., BOTZ, F., CECERE, A., CHANG, Y., CHEN, G., CHEN, H., CHUNG, S. J., CHYU, M. K., DAS, S. K., PAOLA, R. D., DING, Y., DUBOIS, F., DZIDO, G., EAPEN, J., ESCHER, W., FUNFSCHILLING, D., GALAND, Q., GAO, J., GHARAGOZLOO, P. E., GOODSON, K. E., GUTIERREZ, J. G., HONG, H., HORTON, M., HWANG, K. S., IORIO, C. S., JANG, S. P., JARZEBSKI, A. B., JIANG, Y., JIN, L., KABELAC, S., KAMATH, A., KEDZIERSKI, M. A., KIENG, L. G., KIM, C., KIM, J. H., KIM, S., LEE, S. H., LEONG, K. C., MANNA, I., MICHEL, B., NI, R., PATEL, H. E., PHILIP, J., POULIKAKOS, D., REYNAUD, C., SAVINO, R., SINGH, P. K., SONG, P., SUNDARARAJAN, T., TIMOFEEVA, E., TRITCAK, T., TURANOV, A. N., VAERENBERGH, S. V., WEN, D., WITHARANA, S., YANG, C., YEH, W. H., ZHAO, X. Z., and ZHOU, S. Q. A benchmark study on the thermal conductivity of nanofluids. Journal of Applied Physics, 106, 094312 (2009)

    Article  Google Scholar 

  7. MANCA, O., JALURIA, Y., and POULIKAKOS, D. Heat transfer in nanofluids. Advances in Mechanical Engineering, 2010, 380826 (2010)

    Article  Google Scholar 

  8. MAHIAN, O., KIANIFAR, A., KALOGIROU, S. A., POP, I., and WONGWISES, S. A review of the applications of nanofluids in solar energy. International Journal of Heat Mass and Transfer, 57, 582–594 (2013)

    Article  Google Scholar 

  9. MAHIAN, O., KOLSI, L., AMANI, M., ESTELLE, P., AHMADI, G., KLEINSTREUER, C., MARSHALL, J. S., TAYLOR, R. A., ABU-NADA, E., RASHIDI, S., NIAZMAND, H., WONGWISES, S., HAYAT, T., KASAEIAN, A., and POP, I. Recent advances in modeling and simulation of nanofluid flows — part I: fundamental and theory. Physics Reports, 790, 1–48 (2019)

    Article  MathSciNet  Google Scholar 

  10. MAHIAN, O., KOLSI, L., AMANI, M., ESTELLE, P., AHMADI, G., KLEINSTREUER, C., MARSHALL, J. S., TAYLOR, R. A., ABU-NADA, E., RASHIDI, S., NIAZMAND, H., WONGWISES, S., HAYAT, T., KASAEIAN, A., and POP, I. Recent advances in modelling and simulation of nanofluid flows — part II: applications. Physics Reports, 791, 1–60 (2019)

    Article  MathSciNet  Google Scholar 

  11. SHEIKHOLESLAMI, M. and GANJI, D. D. Nanofluid convective heat transfer using semi analytical and numerical approaches: a review. Journal of the Taiwan Institute of Chemical Engineers, 65, 43–77 (2016)

    Article  Google Scholar 

  12. KAKAÇ, S. and PRAMUANJAROENKIJ, A. Single-phase and two-phase treatments of convective heat transfer enhancement with nanofluids — a state-of-the-art review. International Journal of Thermal Sciences, 100, 75–97 (2016)

    Article  Google Scholar 

  13. GROŞAN, T., SHEREMET, M. A., and POP, I. Heat transfer enhancement in cavities filled with nanofluids. Advances Heat Transfer Fluids: from Numerical to Experimental Techniques (ed. MINEA, A. A.), CRC Press, Taylor & Francis, New York, 267–284 (2017)

    Chapter  Google Scholar 

  14. SATHIYAMOORTHY, M. and CHAMKHA, A. J. Natural convection flow under magnetic field in a square cavity for uniformly (or) linearly heated adjacent walls. International Journal of Numerical Methods for Heat and Fluid Flow, 22, 677–698 (2012)

    Article  Google Scholar 

  15. SHEIKHOLESLAMI, M. and GANJI, D. D. Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer. Energy, 75, 400–410 (2014)

    Article  Google Scholar 

  16. CHAMKHA, A. J. and SELIMEFENDIGIL, F. MHD free convection and entropy generation in a corrugated cavity filled with a porous medium saturated with nanofluids. Entropy, 20, 846 (2018)

    Article  Google Scholar 

  17. HUMINIC, G. and HUMINIC, A. Hybrid nanofluids for heat transfer applications — a state-of-the-art review. International Journal of Heat Mass and Transfer, 125, 82–103 (2018)

    Article  Google Scholar 

  18. SARKARN, J., GHOSH, P., and ADIL, A. A review on hybrid nanofluids: recent research, development and applications. Renewable and Sustainable Energy Reviews, 43, 164–177 (2015)

    Article  Google Scholar 

  19. SIDIK, N. A. C., ADAMU, I. M., JAMIL, M. M., KEFAYATI, G. H. R., MAMAT, R., and NAJAFI, G. Recent progress on hybrid nanofluids in heat transfer applications: a comprehensive review. International Communications in Heat and Mass Transfer, 8, 68–79 (2016)

    Article  Google Scholar 

  20. SUNDAR, L. S., SHARMA, K. V., SINGH, M. K., and SOUSA, A. C. M. Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor — a review. Renewable and Sustainable Energy Reviews, 68, 185–198 (2017)

    Article  Google Scholar 

  21. BABU, J. R., KUMAR, K. K., and RAO, S. S. State-of-art review on hybrid nanofluids. Renewable and Sustainable Energy Reviews, 77, 551–565 (2017)

    Article  Google Scholar 

  22. SURESH, S., VENKITARAJ, K. P., SELYAKUMAR, P., and CHANDRASEKAR, M. Synthesis of Al2O3-Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 388, 41–48 (2011)

    Article  Google Scholar 

  23. KHANAFER, K. and VAFAI, K. Applications of nanofluids in porous medium. Journal of Thermal Analysis and Calorimetry, 135, 1479–1492 (2019)

    Article  Google Scholar 

  24. SHEREMET, M. A., CÎMPEAN, D. S., and POP, I. Thermogravitational convection of hybrid nanofluid in a porous chamber with a central heat-conducting body. Symmetry, 12, 593 (2020)

    Article  Google Scholar 

  25. DEVI, S. P. A. and DEVI, S. S. U. Numerical investigation of hydromagnetic hybrid Cu/water nanofluid flow over a permeable stretching sheet with suction. De Gruyter Ijnsns, 17, 249–257 (2016)

    Article  Google Scholar 

  26. DEVI, S. S. U. and DEVI, S. P. A. Numerical investigation of three-dimensional hybrid CuAl2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating. Canadian Journal of Physics, 94, 490–496 (2016)

    Article  Google Scholar 

  27. DEVI, S. S. U. and DEVI, S. P. A. Heat transfer enhancement of Cu-Al2O3/water hybrid nanofluid flow over a stretching sheet. Journal of the Nigerian Mathematical Society, 36, 419–433 (2017)

    MathSciNet  Google Scholar 

  28. TAYEBI, T. and CHAMKHA, A. J. Buoyancy-driven heat transfer enhancement in a sinusoidally heated enclosure utilizing hybrid nanofluid. Computational Thermal Sciences: an International Journal, 9, 405–421 (2017)

    Article  Google Scholar 

  29. GHADIKOLAEI, S. S., YASSARI, M., SADEGHI, H., HOSSEINZADEH, K., and GANJI, D. D. Investigation on thermophysical properties of TiO2-Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow. Powder Technology, 322, 428–438 (2017)

    Article  Google Scholar 

  30. YOUSEFI, R. M., DINARVAND, S., YAZDI, M. E., and POP, I. Stagnation-point flow of an aqueous titania-copper hybrid nanofluid toward a wavy cylinder. International Journal of Numerical Methods for Heat and Fluid Flow, 28, 1716–1735 (2018)

    Article  Google Scholar 

  31. HAYAT, T., NADEEM, S., and KHAN, A. U. Rotating flow of Ag-CuO/H2O hybrid nanofluid with radiation and partial slip boundary effects. The European Physical Journal, 41, 75 (2018)

    Google Scholar 

  32. ALY, E. and POP, I. MHD flow and heat transfer over a permeable stretching/shrinking sheet in a hybrid nanofluid with a convective boundary condition. International Journal of Numerical Methods for Heat and Fluid Flow, 29, 3012–3038 (2019)

    Article  Google Scholar 

  33. ALY, E. H. and POP, I. MHD flow and heat transfer near stagnation point over a stretching/shrinking surface with partial slip and viscous dissipation: hybrid nanofluid versus nanofluid. Powder Technology, 367, 192–205 (2020)

    Article  Google Scholar 

  34. KHASHI’IE, N. S., ARIFIN, N. M., NAZAR, R., HAFIDZUDDIN, E. H., WAHI, N., and POP, I. Magnetohydrodynamics (MHD) axisymmetric flow and heat transfer of a hybrid nanofluid past a radially permeable stretching/shrinking sheet with Joule heating. Chinese Journal of Physics, 64, 251–263 (2020)

    Article  MathSciNet  Google Scholar 

  35. WAINI, I., ISHAK, A., and POP, I. Hybrid nanofluid flow and heat transfer over a nonlinear permeable stretching/shrinking surface. International Journal of Numerical Methods for Heat and Fluid Flow, 29, 3110–3127 (2019)

    Article  Google Scholar 

  36. WAINI, I., ISHAK, A., and POP, I. Flow and heat transfer along a permeable stretching/shrinking curved surface in a hybrid nanofluid. Physica Scripta, 94, 105219 (2019)

    Article  Google Scholar 

  37. TAKABI, B. and SALEHI, S. Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Advances in Mechanical Engineering, 6, 147059 (2015)

    Article  Google Scholar 

  38. PARVEEN, R. and MAHAPATRA, T. R. Numerical simulation of MHD double diffusive natural convection and entropy generation in a wavy enclosure filled with nanofluid with discrete heating. Heliyon, 5, 02496 (2019)

    Article  Google Scholar 

  39. YU, P. X., QIU, J. X., QIN, Q., and TIAN, Z. F. Numerical investigation of natural convection in a rectangular cavity under different directions of uniform magnetic field. International Journal of Heat Mass and Transfer, 67, 1131–1144 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Groşan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Revnic, C., Groşan, T., Sheremet, M. et al. Numerical simulation of MHD natural convection flow in a wavy cavity filled by a hybrid Cu-Al2O3-water nanofluid with discrete heating. Appl. Math. Mech.-Engl. Ed. 41, 1345–1358 (2020). https://doi.org/10.1007/s10483-020-2652-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-020-2652-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation