Skip to main content
Log in

Multi-resonator coupled metamaterials for broadband vibration suppression

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

In this study, multi-resonator coupled metamaterials (MRCMs) with local resonators are proposed to obtain the multiple and wide band gaps. Kinetic models of the MRCMs are established, and the boundary conditions of the unit cell are obtained with Bloch’s theorem. The effects of structural parameters, including the mass of the resonator and the spring stiffness, on the distributions of the band gaps are studied. Furthermore, the frequency domain responses and the time domain responses are calculated for analyzing the structural vibration characteristics and the effects of damping on structural vibration. The results show that the frequency domain response can accurately express the distributions of the band gaps of the MRCMs, and we can increase the number and the width of the band gaps by using the MRCMs for the superior vibration suppression capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HE, C., LAI, H. S., HE, B., YU, S. Y., XU, X., LU, M. H., and CHEN, Y. F. Acoustic analogues of three-dimensional topological insulators. Nature Communications, 11, 2318 (2020)

    Article  Google Scholar 

  2. MEZA, L. R., ZELHOFER, A. J., CLARKE, N., MATEOS, A. J., KOCHMANN, D. M., and GREER, J. R. Resilient 3D hierarchical architected metamaterials. Proceedings of the National Academy of Sciences of the United States of America, 112, 11502–11507 (2015)

    Article  Google Scholar 

  3. TSAKMAKIDIS, K. L., RESHEF, O., ALMPANIS, E., ZOUROS, G. P., MOHAMMADI, E., SAADAT, D., SOHRABI, F., FAHIMIKASHANI, N., ETEZADI, D., and BOYD, R. W. Ultrabroadband 3D invisibility with fast-light cloaks. Nature Communications, 10, 4859 (2019)

    Article  Google Scholar 

  4. JIANG, T., LI, C., HE, Q., and PENG, Z. K. Randomized resonant metamaterials for single-sensor identification of elastic vibrations. Nature Communications, 11, 2353 (2020)

    Article  Google Scholar 

  5. ZHANG, K., GE, M. H., ZHAO, C., DENG, Z. C., and XU, X. J. Free vibration of nonlocal Timoshenko beams made of functionally graded materials by symplectic method. Composites Part B: Engineering, 156, 174–184 (2019)

    Article  Google Scholar 

  6. OH, J. H., KWON, Y. E., LEE, H. J., and KIM, Y. Y. Elastic metamaterials for independent realization of negativity in density and stiffness. Scientific Reports, 6, 23630 (2016)

    Article  Google Scholar 

  7. JENSEN, J. S. Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures. Journal of Sound and Vibration, 266, 1053–1078 (2003)

    Article  Google Scholar 

  8. FANG, N. X., XI, D., XU, J., AMBATI, M., SRITURAVANICH, W., SUN, C., and ZHANG, X. Ultrasonic metamaterials with negative modulus. Nature Materials, 5, 452–456 (2006)

    Article  Google Scholar 

  9. JABERZADEH, M., LI, B., and TAN, K. T. Wave propagation in an elastic metamaterial with anisotropic effective mass density. Wave Motion, 89, 131–141 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. YI, K., OUISSE, M., SADOULETREBOUL, E., and MATTEN, G. Active metamaterials with broadband controllable stiffness for tunable band gaps and non-reciprocal wave propagation. Smart Materials and Structures, 28, 065025 (2019)

    Article  Google Scholar 

  11. LEPIDI, M. and BACIGALUPO, A. Wave propagation properties of one-dimensional acoustic metamaterials with nonlinear diatomic microstructure. Nonlinear Dynamics, 98, 2711–2735 (2019)

    Article  MATH  Google Scholar 

  12. HOU, X., DENG, Z., and ZHOU, J. Symplectic analysis for wave propagation in one-dimensional nonlinear periodic structures. Applied Mathematics and Mechanics (English Edition), 31(11), 1371–1382 (2010) https://doi.org/10.1007/s10483-010-1369-7

    Article  MathSciNet  MATH  Google Scholar 

  13. BRÛLÉ, S., ENOCH, S., and GUENNEAU, S. Emergence of seismic metamaterials: current state and future perspectives. Physics Letters A, 384, 126034 (2020)

    Article  Google Scholar 

  14. ZHANG, Q., CHEN, Y., ZHANG, K., and HU, G. Programmable elastic valley Hall insulator with tunable interface propagation routes. Extreme Mechanics Letters, 28, 76–80 (2019)

    Article  Google Scholar 

  15. DU, Z., CHEN, H., and HUANG, G. Optimal quantum valley Hall insulators by rationally engineering Berry curvature and band structure. Journal of the Mechanics and Physics of Solids, 135, 103784 (2020)

    Article  MathSciNet  Google Scholar 

  16. ZHANG, K., SU, Y., ZHAO, P., and DENG, Z. Tunable wave propagation in octa-chiral lattices with local resonators. Composite Structures, 220, 114–126 (2019)

    Article  Google Scholar 

  17. ZHANG, K., ZHAO, P., HONG, F., YU, Y., and DENG, Z. On the directional wave propagation in the tetrachiral and hexachiral lattices with local resonators. Smart Materials and Structures, 29, 015017 (2020)

    Article  Google Scholar 

  18. ZHU, R., LIU, X. N., HU, G. K., SUN, C. T., and HUANG, G. L. Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial. Nature Communications, 5, 5510 (2014)

    Article  Google Scholar 

  19. CHEN, Y., LIU, X., and HU, G. Influences of imperfectness and inner constraints on an acoustic cloak with unideal pentamode materials. Journal of Sound and Vibration, 458, 62–73 (2019)

    Article  Google Scholar 

  20. AN, X., FAN, H., and ZHANG, C. Elastic wave and vibration bandgaps in planar square metamaterial-based lattice structures. Journal of Sound and Vibration, 475, 115292 (2020)

    Article  Google Scholar 

  21. ZHOU, W., SU, Y., MUHAMMAD, CHEN, W., and LIM, C. W. Voltage-controlled quantum valley Hall effect in dielectric membrane-type acoustic metamaterials. International Journal of Mechanical Sciences, 172, 105368 (2020)

    Article  Google Scholar 

  22. YE, M., GAO, L., and LI, H. A design framework for gradually stiffer mechanical metamaterial induced by negative Poisson’s ratio property. Materials and Design, 192, 108751 (2020)

    Article  Google Scholar 

  23. REN, T., LIU, C., LI, F., and ZHANG, C. Active tuning of the vibration band gap characteristics of periodic laminated composite metamaterial beams. Journal of Intelligent Material Systems and Structures, 31, 843–859 (2020)

    Article  Google Scholar 

  24. SHI, Z., WANG, Y., and ZHANG, C. Band structure calculation of scalar waves in two-dimensional phononic crystals based on generalized multipole technique. Applied Mathematics and Mechanics (English Edition), 34(9), 1123–1144 (2013) https://doi.org/10.1007/s10483-013-1732-6

    Article  MathSciNet  Google Scholar 

  25. ZHAO, P., ZHANG, K., and DENG, Z. Elastic wave propagation in lattice metamaterials with Koch fractal. Acta Mechanica Solida Sinica, 33, 600–611 (2020)

    Article  Google Scholar 

  26. BAE, M. H. and OH, J. H. Amplitude-induced bandgap: new type of bandgap for nonlinear elastic metamaterials. Journal of the Mechanics and Physics of Solids, 139, 103930 (2020)

    Article  MathSciNet  Google Scholar 

  27. XU, X., BARNHART, M. V., FANG, X., WEN, J., CHEN, Y., and HUANG, G. A nonlinear dissipative elastic metamaterial for broadband wave mitigation. International Journal of Mechanical Sciences, 164, 105159 (2019)

    Article  Google Scholar 

  28. BUKHARI, M. and BARRY, O. Simultaneous energy harvesting and vibration control in a nonlinear metastructure: a spectro-spatial analysis. Journal of Sound and Vibration, 473, 115215 (2020)

    Article  Google Scholar 

  29. ZHANG, K., ZHAO, P., ZHAO, C., HONG, F., and DENG, Z. Study on the mechanism of band gap and directional wave propagation of the auxetic chiral lattices. Composite Structures, 238, 111952 (2020)

    Article  Google Scholar 

  30. SUN, F. and XIAO, L. Bandgap characteristics and seismic applications of inerter-in-lattice metamaterials. Journal of Engineering Mechanics, 145, 04019067 (2019)

    Article  Google Scholar 

  31. LI, F., ZHANG, C., and LIU, C. Active tuning of vibration and wave propagation in elastic beams with periodically placed piezoelectric actuator/sensor pairs. Journal of Sound and Vibration, 393, 14–29 (2017)

    Article  Google Scholar 

  32. QIAN, D. Electro-mechanical coupling wave propagating in a locally resonant piezoelectric/elastic phononic crystal nanobeam with surface effects. Applied Mathematics and Mechanics (English Edition), 41(3), 425–438 (2020) https://doi.org/10.1007/s10483-020-2586-5

    Article  Google Scholar 

  33. SUGINO, C., RUZZENE, M., and ERTURK, A. An analytical framework for locally resonant piezoelectric metamaterial plates. International Journal of Solids and Structures, 182–183, 281–294 (2020)

    Article  Google Scholar 

  34. ZHANG, K., ZHAO, C., LUO, J., MA, Y., and DENG, Z. Analysis of temperature-dependent wave propagation for programmable lattices. International Journal of Mechanical Sciences, 171, 105372 (2020)

    Article  Google Scholar 

  35. SCHAEFFER, M. and RUZZENE, M. Wave propagation in multistable magneto-elastic lattices. International Journal of Solids and Structures, 56–57, 78–95 (2015)

    Article  Google Scholar 

  36. GUO, J., CAO, J., XIAO, Y., SHEN, H., and WEN, J. Interplay of local resonances and Bragg band gaps in acoustic waveguides with periodic detuned resonators. Physics Letters A, 384, 126253 (2020)

    Article  MathSciNet  Google Scholar 

  37. LIU, Z., ZHANG, X., MAO, Y., ZHU, Y., YANG, Z., CHAN, C. T., and SHENG, P. Locally resonant sonic materials. Science, 289, 1734–1736 (2000)

    Article  Google Scholar 

  38. CAMPANA, M. A., OUISSE, M., SADOULET-REBOUL, E., RUZZENE, M., NEILD, S., and SCARPA, F. Impact of non-linear resonators in periodic structures using a perturbation approach. Mechanical Systems and Signal Processing, 135, 106408 (2020)

    Article  Google Scholar 

  39. WANG, J., ZHOU, W., HUANG, Y., LYU, C., CHEN, W., and ZHU, W. Controllable wave propagation in a weakly nonlinear monoatomic lattice chain with nonlocal interaction and active control. Applied Mathematics and Mechanics (English Edition), 39(8), 1059–1070 (2018) https://doi.org/10.1007/s10483-018-2360-6

    Article  MathSciNet  MATH  Google Scholar 

  40. CAI, C., ZHOU, J., WU, L., WANG, K., XU, D., and OUYANG, H. Design and numerical validation of quasi-zero-stiffness metamaterials for very low-frequency band gaps. Composite Structures, 236, 111862 (2020)

    Article  Google Scholar 

  41. SILVEIRA, M. and VASCONCELLOS, D. P. Optimisation of axial vibration attenuation of periodic structure with nonlinear stiffness without addition of mass. Journal of Vibration and Acoustics, 142, 1–28 (2020)

    Google Scholar 

  42. WANG, K., ZHOU, J., WANG, Q., OUYANG, H., and XU, D. Low-frequency band gaps in a metamaterial rod by negative-stiffness mechanisms: design and experimental validation. Applied Physics Letters, 114, 251902 (2019)

    Article  Google Scholar 

  43. ZHOU, J., WANG, K., XU, D., and OUYANG, H. Local resonator with high-static-low-dynamic stiffness for lowering band gaps of flexural wave in beams. Journal of Applied Physics, 121, 044902 (2017)

    Article  Google Scholar 

  44. MUHAMMAD, S., WANG, S., LI, F., and ZHANG, C. Bandgap enhancement of periodic nonuniform metamaterial beams with inertial amplification mechanisms. Journal of Vibration and Control, 26, 1309–1318 (2020)

    Article  MathSciNet  Google Scholar 

  45. CVETICANIN, L., ZUKOVIC, M., and CVETICANIN, D. On the elastic metamaterial with negative effective mass. Journal of Sound and Vibration, 436, 295–309 (2018)

    Article  MATH  Google Scholar 

  46. HUANG, G. L. and SUN, C. T. Band gaps in a multiresonator acoustic metamaterial. Journal of Vibration and Acoustics, 132, 031003 (2010)

    Article  Google Scholar 

  47. TIAN, Y., WU, J. H., LI, H., GU, C., YANG, Z., ZHAO, Z., and LU, K. Elastic wave propagation in the elastic metamaterials containing parallel multi-resonators. Journal of Physics D: Applied Physics, 52, 395301 (2019)

    Article  Google Scholar 

  48. GAO, Y. and WANG, L. Ultrawide coupled bandgap in hybrid periodic system with multiple resonators. Journal of Applied Physics, 127, 204901 (2020)

    Article  Google Scholar 

  49. HU, G., TANG, L., XU, J., LAN, C., and DAS, R. Metamaterial with local resonators coupled by negative stiffness springs for enhanced vibration suppression. Journal of Applied Mechanics, 86, 081009 (2019)

    Article  Google Scholar 

  50. XU, X., BARNHART, M. V., LI, X., CHEN, Y., and HUANG, G. Tailoring vibration suppression bands with hierarchical metamaterials containing local resonators. Journal of Sound and Vibration, 442, 237–248 (2019)

    Article  Google Scholar 

  51. TRAINITI, G., RIMOLI, J. J., and RUZZENE, M. Wave propagation in undulated structural lattices. International Journal of Solids and Structures, 97, 431–444 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zhang.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11872313 and 11902045), the National Key R&D Program of China (No. 2017YFB1102801), the Fundamental Research Fund for the Central Universities, and the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (No. CX2020107)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, P., Zhang, K., Zhao, C. et al. Multi-resonator coupled metamaterials for broadband vibration suppression. Appl. Math. Mech.-Engl. Ed. 42, 53–64 (2021). https://doi.org/10.1007/s10483-021-2684-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-021-2684-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation