Skip to main content
Log in

Quench characteristics and mechanical responses during quench propagation in rare earth barium copper oxide pancake coils

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Quench and mechanical behaviors are critical issues in high temperature superconducting coils. In this paper, the quench characteristics in the rare earth barium copper oxide (REBCO) pancake coil at 4.2 K are analyzed, and a two-dimensional (2D) axisymmetric electro-magneto-thermal model is presented. The effects of the constituent materials, background field, and coil size are analyzed. An elastoplastic mechanical model is used to study the corresponding mechanical responses during the quench propagation. The variations of the temperature and strain in superconducting layers are compared. The results indicate that the radial strain evolutions can reflect the transverse quench propagation and the tensile hoop and radial stresses in superconducting layers increase with the quench propagation. The possible damages are discussed with the consideration of the effects of the background field and coil size. It is concluded that the high background field significantly increases the maximum tensile hoop and radial stresses in quenching coils and local damage may be caused.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HAHN, S., KIM, K., KIM, K., HU, X. B., PAINTER, T., DIXON, I., KIM, S., BHATTARAI, K. R., NOGUCHI, S., JAROSZYNSKI, J., and LARBALESTIER, D. C. 45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet. Nature, 570, 496–499 (2019)

    Article  Google Scholar 

  2. TSUKAMOTO, O., FUJIMOTO, Y., and TAKAO, T. Study on stabilization and quench protection of coils wound of HTS coated conductors considering quench origins — proposal of criteria for stabilization and quench protection. Cryogenics, 63, 148–154 (2014)

    Article  Google Scholar 

  3. WEIJERS, H. W., MARKIEWICZ, W. D., GAVRILIN, A. V., VORAN, A. J., VIOUCHKOV, Y. L., GUNDLACH, S. R., NOYES, P. D., ABRAIMOV, D. V., BAI, H. Y., HANNAHS, S. T., and MURPHY, T. P. Progress in the development and construction of a 32 T superconducting magnet. IEEE Transactions on Applied Superconductivity, 26, 4300807 (2016)

    Article  Google Scholar 

  4. TAKAHASHI, S., SUETOMI, Y., TAKAO, T., YANAGISAWA, Y., MAEDA, H., TAKEDA, Y., and SHIMOYAMA, J. I. Hoop stress modification, stress hysteresis and degradation of a REBCO coil due to the screening current under external magnetic field cycling. IEEE Transactions on Applied Superconductivity, 30, 4602607 (2020)

    Article  Google Scholar 

  5. SUMPTION, M. D., MAJOROS, M., SUSNER, M., LYONS, D., PENG, X., CLARK, C. F., LAWLESS, W. N., and COLLINGS, E. W. Thermal diffusion and quench propagation in YBCO pancake coils wound with ZnO and mylar insulations. Superconductor Science and Technology, 23, 075004 (2010)

    Article  Google Scholar 

  6. LIU, L. Y., CHEN, Y., ZHANG, H. Y., CHEN, W., SHI, J. T., YANG, X. S., ZHANG, Y., and ZHANG, Y. Quench characteristics comparison between solid nitrogen and conduction cooled REBCO coil under thermal disturbance and over current pulse. IEEE Transactions on Applied Superconductivity, 28, 4603705 (2018)

    Google Scholar 

  7. ZHANG, M., MATSUDA, K., and COOMBS, T. A. New application of temperature-dependent modelling of high temperature superconductors: quench propagation and pulse magnetization. Journal of Applied Physics, 112, 043912 (2012)

    Article  Google Scholar 

  8. HAHN, S., PARK, D. K., BASCUNAN, J., and IWASA, Y. HTS pancake coils without turn-to-turn insulation. IEEE Transactions on Applied Superconductivity, 21, 1592–1595 (2011)

    Article  Google Scholar 

  9. SHIN, H. J., KIM, K. L., CHOI, Y. H., YANG, D., KIM, Y. G., and LEE, H. A study on normal zone propagation behavior of partially insulated GdBCO coil. IEEE Transactions on Applied Superconductivity, 25, 6600404 (2015)

    Google Scholar 

  10. LECREVISSE, T., BADEL, A., BENKEL, T., CHAUD, X., FAZILLEAU, P., and TIXADOR, P. Metal-as-insulation variant of no-insulation HTS winding technique: pancake tests under high background magnetic field and high current at 4.2 K. Superconductor Science and Technology, 31, 055008 (2018)

    Article  Google Scholar 

  11. WANG, Y. W., ZHENG, J. X., ZHU, Z. X., ZHANG, M., and YUAN, W. J. Quench behavior of high-temperature superconductor (RE)Ba2Cu3Ox CORC cable. Journal of Physics D: Applied Physics, 52, 345303 (2019)

    Article  Google Scholar 

  12. PI, W., LIU, Z. Q., LI, G. Q., MA, S. W., MENG, Y. R., SHI, Q. M., DONG, J., and WANG, Y. S. 4D simulation of quench behavior in quasi-isotropic superconducting cable of stacked REBCO tapes considering thermal contact resistance. Superconductor Science and Technology, 33, 084005 (2020)

    Article  Google Scholar 

  13. SU, X. Y., LIU, C., ZHOU, J., ZHANG, X. Y., and ZHOU, Y. H. A method to access the electromechanical properties of superconducting thin film under uniaxial compression. Acta Mechanica Sinica, 36, 1046–1050 (2020)

    Article  Google Scholar 

  14. BARTH, C., MONDONICO, G., and SENATORE, C. Electro-mechanical properties of REBCO coated conductors from various industrial manufacturers at 77 K, self-field and 4.2 K, 19 T. Superconductor Science and Technology, 28, 045011 (2015)

    Article  Google Scholar 

  15. ZHANG, X. Y., SUN, C., LIU, C., and ZHOU, Y. H. A standardized measurement method and data analysis for the delamination strengths of YBCO coated conductors. Superconductor Science and Technology, 33, 035005 (2020)

    Article  Google Scholar 

  16. WANG, T. G., LI, Z. X., GAO, J. J., and GOU, X. F. Mechanical damage of YBa2Cu3O7 coated conducting films caused by its CeO2 interface with defect. International Journal of Applied Mechanics, 11, 1950038 (2019)

    Article  Google Scholar 

  17. GRAY, W. H. and BALLOU, J. K. Finite element stress analysis of orthotropic solenoids. Journal of Applied Physics, 48, 3100–3109 (1977)

    Article  Google Scholar 

  18. ARP, V. Stresses in superconducting solenoids. Journal of Applied Physics, 48, 2026–2036 (1977)

    Article  Google Scholar 

  19. WANG, L., WANG, Q. L., LI, L. K., QIN, L., LIU, J. H., LI, Y., and HU, X. N. The effect of winding conditions on the stress distribution in a 10.7 T REBCO insert for the 25.7 T superconducting magnet. IEEE Transactions on Applied Superconductivity, 28, 4600805 (2018)

    Google Scholar 

  20. LIU, D. H., ZHANG, W. W., YONG, H. D., and ZHOU, Y. H. Thermal stability and mechanical behavior in no-insulation high-temperature superconducting pancake coils. Superconductor Science and Technology, 31, 085010 (2018)

    Article  Google Scholar 

  21. LIU, D. H., ZHANG, W. W., YONG, H. D., and ZHOU, Y. H. Numerical analysis of thermal stability and mechanical response in a no-insulation high-temperature superconducting layer-wound coil. Superconductor Science and Technology, 32, 044001 (2019)

    Article  Google Scholar 

  22. XIA, J., BAI, H. Y., YONG, H. D., WEIJERS, H. W., PAINTER, T. A., and BIRD, M. D. Stress and strain analysis of a REBCO high field coil based on the distribution of shielding current. Superconductor Science and Technology, 32, 095005 (2019)

    Article  Google Scholar 

  23. HONG, Z. Y., CAMPBELL, A. M., and COOMBS, T. A. Numerical solution of critical state in superconductivity by finite element software. Superconductor Science and Technology, 19, 1246–1252 (2006)

    Article  Google Scholar 

  24. COMSOL Co., Ltd. COMSOL Multiphysics Material Library, Beijing (2020)

  25. LU, J., CHOI, E. S., and ZHOU, H. D. Physical properties of Hastelloy C-276 at cryogenic temperatures. Journal of Applied Physics, 103, 064908 (2008)

    Article  Google Scholar 

  26. CHAN, W. K. and SCHWARTZ, J. Improved stability, magnetic field preservation and recovery speed in (Re)Ba2Cu3Ox-based no-insulation magnets via a graded-resistance approach. Superconductor Science and Technology, 30, 074007 (2017)

    Article  Google Scholar 

  27. XU, A., JAROSZYNSKI, J. J., KAMETANI, F., CHEN, Z., LARBALESTIER, D. C., VIOUCHKOV, Y. L., CHEN, Y., XIE, Y., and SELVAMANICKAM, V. Angular dependence of Jc for YBCO coated conductors at low temperature and very high magnetic fields. Superconductor Science and Technology, 23, 014003 (2010)

    Article  Google Scholar 

  28. DURON, J., GRILLI, F., DUTOIT, B., and STAVREV, S. Modelling the E-J relation of high-Tc superconductors in an arbitrary current range. Physica C: Superconductivity, 401, 231–235 (2004)

    Article  Google Scholar 

  29. IKEBE, M., FUJISHIRO, H., NAITO, T., NOTO, K., KOHAYASHI, S., and YOSHIZAWA, S. Thermal conductivity of YBCO(123) and YBCO(211) mixed crystals prepared by MMTG. Cryogenics, 34, 57–61 (1994)

    Article  Google Scholar 

  30. PHILLIPS, N. E. and FISHER, R. A. The specific heat of high-Tc superconductors. Progress in Low Temperature Physics, Elsevier, Amsterdam, 267–357 (1992)

    Google Scholar 

  31. National Institute of Standards and Technology. Cryogenic Technology Resources, NIST, Gaithersburg (2020) http://cryogenics.nist.gov

  32. KIM, N. H. Introduction to Nonlinear Finite Element Analysis, Springer Science+Business Media, New York, 265–366 (2015)

    Book  Google Scholar 

  33. GAO, P. F., CHAN, W. K., WANG, X. Z., ZHOU, Y. H., and SCHWARTZ, J. Stress, strain and electromechanical analyses of (RE)Ba2Cu3Ox conductors using three-dimensional/two-dimensional mixeddimensional modeling: fabrication, cooling and tensile behavior. Superconductor Science and Technology, 33, 044015 (2020)

    Article  Google Scholar 

  34. MIYAZAKI, H., IWAI, S., TOSAKA, T., TASAKI, K., and ISHII, Y. Delamination strengths of different types of REBCO-coated conductors and method for reducing radial thermal stresses of impregnated REBCO pancake coils. IEEE Transactions on Applied Superconductivity, 25, 6602305 (2015)

    Google Scholar 

  35. FUJISHIRO, H., AINSLIE, M., TAKAHASHI, K., NAITO, T., YANAGI, Y., ITOH, Y., and NAKAMURA, T. Simulation studies of mechanical stresses in REBaCuO superconducting ring bulks with infinite and finite height reinforced by metal ring during field-cooled magnetization. Superconductor Science and Technology, 30, 085008 (2017)

    Article  Google Scholar 

  36. OSAMURA, K., SUGANO, M., MACHIYA, S., ADACHI, H., OCHIAI, S., and SATO, M. Internal residual strain and critical current maximum of a surrounded Cu stabilized YBCO coated conductor. Superconductor Science and Technology, 22, 065001 (2009)

    Article  Google Scholar 

  37. ALLEN, N. C., CHIESA, L., and TAKAYASU, M. Structural modeling of HTS tapes and cables. Cryogenics, 80, 405–418 (2016)

    Article  Google Scholar 

  38. MIYAGI, D., KATO, M., YOSHIDA, Y., and TSUDA, M. Influence of a coil bobbin on transient thermal stress in a REBCO pancake coil. IEEE Transactions on Applied Superconductivity, 28, 4603505 (2018)

    Google Scholar 

  39. ZERMENO, V., SIROIS, F., TAKAYASU, M., VOJENCIAK, M., KARIO, A., and GRILLI, F. A self-consistent model for estimating the critical current of superconducting devices. Superconductor Science and Technology, 28, 085004 (2015)

    Article  Google Scholar 

  40. NIU, M. D., YONG, H. D., XIA, J., and ZHOU, Y. H. The effects of ferromagnetic disks on AC losses in HTS pancake coils with nonmagnetic and magnetic substrates. Journal of Superconductivity and Novel Magnetism, 32, 499–510 (2019)

    Article  Google Scholar 

  41. SHIROYANAGI, Y., SAMPSON, W. B., and GHOSH, A. K. Quench propagation studies using a small bifilar YBCO coil. AIP Conference Proceedings, 58, 265–272 (2012)

    Article  Google Scholar 

  42. WANG, X. Z., GUAN, M. Z., and MA, L. Z. Strain-based quench detection for a solenoid superconducting magnet. Superconductor Science and Technology, 25, 095009 (2012)

    Article  Google Scholar 

  43. TONG, Y. J., GUAN, M. Z., and WANG, X. Z. Theoretical estimation of quench occurrence and propagation based on generalized thermoelasticity for LTS/HTS tapes triggered by a spot heater. Superconductor Science and Technology, 30, 045002 (2017)

    Article  Google Scholar 

  44. MARINUCCI, C., BOTTURA, L., CALVI, M., and WESCHE, R. Quench analysis of a high-current forced-fow HTS conductor model for fusion magnets. IEEE Transactions on Applied Superconductivity, 21, 2445–2448 (2011)

    Article  Google Scholar 

  45. VAN DER LAAN, D. C., EKIN, J. W., CLICKNER, C. C., and STAUFFER, T. C. Delamination strength of YBCO coated conductors under transverse tensile stress. Superconductor Science and Technology, 20, 765–770 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huadong Yong.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11872195, 11472120, and 11802036) and the 111 Project (No. B14044)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, M., Xia, J., Yong, H. et al. Quench characteristics and mechanical responses during quench propagation in rare earth barium copper oxide pancake coils. Appl. Math. Mech.-Engl. Ed. 42, 235–250 (2021). https://doi.org/10.1007/s10483-021-2699-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-021-2699-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation