Skip to main content

Advertisement

Log in

Recent improvements of actuator line-large-eddy simulation method for wind turbine wakes

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

In a large wind farm, the wakes of upstream and downstream wind turbines can interfere with each other, affecting the overall power output of the wind farm. To further improve the numerical accuracy of the turbine wake dynamics under atmosphere turbulence, this work proposes some improvements to the actuator line-large-eddy simulation (AL-LES) method. Based on the dynamic k-equation large-eddy simulation (LES), this method uses a precursor method to generate atmospheric inflow turbulence, models the tower and nacelle wakes, and improves the body force projection method based on an anisotropic Gaussian distribution function. For these three improvements, three wind tunnel experiments are used to validate the numerical accuracy of this method. The results show that the numerical results calculated in the far-wake region can reflect the characteristics of typical onshore and offshore wind conditions compared with the experimental results. After modeling the tower and nacelle wakes, the wake velocity distribution is consistent with the experimental result. The radial migration velocity of the tip vortex calculated by the improved blade body force distribution model is 0.32 m/s, which is about 6% different from the experimental value and improves the prediction accuracy of the tip vortex radial movement. The method proposed in this paper is very helpful for wind turbine wake dynamic analysis and wind farm power prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHANG, Z. Y., ZHAO, N., ZHONG, W., WANG, L., and XU, B. F. Progresses in application of computational fluid dynamic methods to large scale wind turbine aerodynamics. Applied Mathematics and Mechanics (English Edition), 37(S1), 21–30 (2016)

    Google Scholar 

  2. SHEN, W. Z., ZHU, W. J., and SØRENSEN, J. N. Actuator line/Navier-Stokes computations for the MEXICO rotor: comparison with detailed measurements. Wind Energy, 15(5), 811–825 (2012)

    Article  Google Scholar 

  3. LI, D. S., GUO, T., LI, R. N., YANG, C. X., CHENG, Z. X., LI, Y., and HU, W. R. A nonlinear model for aerodynamic configuration of wake behind horizontal-axis wind turbine. Applied Mathematics and Mechanics (English Edition), 40(9), 1313–1326 (2019) https://doi.org/10.1007/s10483-019-2536-9

    Article  MathSciNet  MATH  Google Scholar 

  4. LI, Y. and DUAN, L. Status of large scale wind turbine technology development abroad. Applied Mathematics and Mechanics (English Edition), 37(S1), 117–124 (2016)

    Google Scholar 

  5. SANDERSE, B., VAN DER PIJL, S. P., and KOREN, B. Review of computational fluid dynamics for wind turbine wake aerodynamics. Wind Energy, 14(7), 799–819 (2011)

    Article  Google Scholar 

  6. RADHAKRISHNAN, S. and BELLAN, J. Explicit filtering to obtain grid-spacing-independent and discretization-order-independent large-eddy simulation of compressible single-phase flow. Journal of Fluid Mechanics, 697, 399–435 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. SINGH, S., YOU, D., and BOSE, S. T. Large-eddy simulation of turbulent channel flow using explicit filtering and dynamic mixed models. Physics of Fluids, 24(8), 085105 (2012)

    Article  Google Scholar 

  8. MITTAL, A., SREENIVAS, K., TAYLOR, L. K., HERETH, L., and HILBERT, C. B. Blade-resolved simulations of a model wind turbine: effect of temporal convergence. Wind Energy, 19(10), 1761–1783 (2016)

    Article  Google Scholar 

  9. TROLDBORG, N., ZAHLE, F., RETHORE, P. E., and SØRENSEN, J. N. Comparison of wind turbine wake properties in non-sheared inflow predicted by different computational fluid dynamics rotor models. Wind Energy, 18(7), 1239–1250 (2015)

    Article  Google Scholar 

  10. WU, Y. T. and PORTE-AGEL, F. Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations. Boundary-Layer Meteorology, 138(3), 345–366 (2011)

    Article  Google Scholar 

  11. SØRENSEN, J. N., MIKKELSEN, R. F., HENNINGSON, D. S., IVANELL, S., SARMAST, S., and ANDERSEN, S. J. Simulation of wind turbine wakes using the actuator line technique. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2035), 20140071 (2015)

    Article  Google Scholar 

  12. SARMAST, S., SHEN, W. Z., ZHU, W. J., MIKKELSEN, R. F., BRETON, S. P., and IVANELL, S. Validation of the actuator line and disc techniques using the new MEXICO measurements. Journal of Physics: Conference Series, 753, 032026 (2016)

    Google Scholar 

  13. QIAN, Y. R., ZHANG, Z. Y., and WANG, T. G. Comparative study of the aerodynamic performance of the new MEXICO rotor under yaw conditions. Energies, 11(4), 833–851 (2018)

    Article  Google Scholar 

  14. VASATURO, R., KALKMAN, I., BLOCKEN, B., and VAN WESEMAEL, P. J. V. Large eddy simulation of the neutral atmospheric boundary layer: performance evaluation of three inflow methods for terrains with different roughness. Journal of Wind Engineering and Industrial Aerodynamics, 173, 241–261 (2018)

    Article  Google Scholar 

  15. TABOR, G. R. and BABA-AHMADI, M. H. Inlet conditions for large eddy simulation: a review. Computers & Fluids, 39(4), 553–567 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. SMIRNOV, A., SHI, S., and CELIK, I. Random flow generation technique for large eddy simulations and particle-dynamics modeling. Journal of Fluids Engineering, 123(2), 359–371 (2001)

    Article  Google Scholar 

  17. MATHEY, F., COKLJAT, D., BERTOGLIO, J. P., and SERGENT, E. Specification of LES inlet boundary condition using vortex method. Progress in Computational Fluid Dynamics, 6, 58–67 (2006)

    Article  MATH  Google Scholar 

  18. VAUTARD, R., THAIS, F., TOBIN, I., BRÉON, F. M., DE LAVERGNE, J. G. D., COLETTE, A., YIOU, P., and RUTI, P. M. Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms. Nature Communications, 5, 3196 (2014)

    Article  Google Scholar 

  19. CHURCHFIELD, M. J., LEE, S., MICHALAKES, J., and MORIARTY, P. J. A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics. Journal of Turbulence, 13(14), 1–32 (2012)

    MathSciNet  Google Scholar 

  20. MENEVEAU, C., CALAF, M., and MEYERS, J. Large eddy simulation study of the fully developed wind-turbine array boundary layer. Physics of Fluids, 22(1), 46–56 (2010)

    MATH  Google Scholar 

  21. ZHANG, W., MARKFORT, C. D., and PORTE-AGEL, F. Wind-turbine wakes in a convective boundary layer: a wind-tunnel study. Boundary-Layer Meteorology, 146(2), 161–179 (2013)

    Article  Google Scholar 

  22. DÖRENKÄMPER, M., WITHA, B., STEINFELD, G., HEINEMANN, D., and KÜHN, M. The impact of stable atmospheric boundary layers on wind-turbine wakes within offshore wind farms. Journal of Wind Engineering and Industrial Aerodynamics, 144, 146–153 (2015)

    Article  Google Scholar 

  23. HEISEL, M., HONG, J., and GUALA, M. The spectral signature of wind turbine wake meandering: a wind tunnel and field-scale study. Wind Energy, 21(9), 715–731 (2018)

    Article  Google Scholar 

  24. JACOBSON, M. Z., ARCHER, C. L., and KEMPTON, A. Taming hurricanes with arrays of offshore wind turbines. Nature Climate Change, 4(3), 195–200 (2014)

    Article  Google Scholar 

  25. PORTE-AGEL, F., BASTANKHAH, M., and SHAMSODDIN, S. Wind-turbine and wind-farm flows: a review. Boundary-Layer Meteorology, 174(1), 1–59 (2020)

    Article  Google Scholar 

  26. ŐNDER, A. and MEYERS, J. On the interaction of very-large-scale motions in a neutral atmospheric boundary layer with a row of wind turbines. Journal of Fluid Mechanics, 841, 1040–1072 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. ZHENG, Z., GAO, Z. T., LI, D. S., LI, R. N., LI, Y., HU, Q. H., and HU, W. R. Interaction between the atmospheric boundary layer and a stand-alone wind turbine in Gansu — Part II: numerical analysis. Science China Physics Mechanics & Astronomy, 61(9), 94712 (2018)

    Article  Google Scholar 

  28. KANG, S., YANG, X., and FOTIS, S. On the onset of wake meandering for an axial flow turbine in a turbulent open channel flow. Journal of Fluid Mechanics, 744(4), 376–403 (2014)

    Article  Google Scholar 

  29. FOTI, D., YANG, X., and SOTIROPOULOS, F. Similarity of wake meandering for different wind turbine designs for different scales. Journal of Fluid Mechanics, 842, 5–25 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. FOTI, D., YANG, X., SHEN, L., and SOTIROPOULOS, F. Effect of wind turbine nacelle on turbine wake dynamics in large wind farms. Journal of Fluid Mechanics, 869, 1–26 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. MARTÍNEZ-TOSSAS, L. A., CHURCHFIELD, M. J., and MENEVEAU, C. Optimal smoothing length scale for actuator line models of wind turbine blades based on Gaussian body force distribution. Wind Energy, 20(6), 1083–1096 (2017)

    Article  Google Scholar 

  32. JHA, P. K. and SCHMITZ, S. Actuator curve embedding-an advanced actuator line model. Journal of Fluid Mechanics, 834(R2), 1–11 (2018)

    MathSciNet  MATH  Google Scholar 

  33. MENON, S. and KIM, W. W. High Reynolds number flow simulations using the localized dynamic subgrid-scale model. Proceedings of the 34th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reno, 15–18 (1996)

  34. KIM, W. W. and MENON, S. Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows. Proceedings of the 35th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reno, 6–9 (1997)

  35. MOENG, C. H. A large-eddy-simulation model for the study of planetary boundary-layer turbulence. Journal of the Atmospheric Sciences, 41(13), 2052–2062 (1984)

    Article  Google Scholar 

  36. HU, Q. H., LI, Y., DI, Y. J., and CHEN, J. W. A large-eddy simulation study of horizontal axis tidal turbine in different inflow conditions. Journal of Renewable and Sustainable Energy, 9(6), 064501 (2017)

    Article  Google Scholar 

  37. CHURCHFIELD, M. J., LI, Y., and MORIARTY, P. J. A large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1985), 20120421 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. LI, D. S., GUO, T., LI, Y. R., HU, J. S., ZHENG, Z., LI, Y., DI, Y. J., HU, W. R., and LI, R. N. Interaction between the atmospheric boundary layer and a standalone wind turbine in Gansu — Part I: field measurement. Science China Physics Mechanics & Astronomy, 61(9), 94711 (2018)

    Article  Google Scholar 

  39. ISSA, R. I., AHMADI-BEFRUI, B., BESHAY, K. R., and GOSMAN, A. D. Solution of the implicitly discretised reacting flow equations by operator-splitting. Journal of Computational Physics, 93(2), 388–410 (1991)

    Article  MATH  Google Scholar 

  40. RHIE, C. M. and CHOW, W. L. Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA Journal, 21(11), 1525–1532 (1983)

    Article  MATH  Google Scholar 

  41. MOUKALLED, F., MANGANI, L., and DARWISH, M. The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM and Matlab, 1st ed., Springer International Publishing, Switzerland, 303–364 (2016)

    MATH  Google Scholar 

  42. BARLAS, E., BUCKINGHAM, S., and VAN BEECK, J. Roughness effects on wind-turbine wake dynamics in a boundary-layer wind tunnel. Boundary-Layer Meteorology, 158(1), 27–42 (2016)

    Article  Google Scholar 

  43. KROGSTAD, P. A. and ERIKSEN, P. E. “Blind test” calculations of the performance and wake development for a model wind turbine. Renewable Energy, 50, 325–333 (2013)

    Article  Google Scholar 

  44. KROGSTAD, P. A. and LUND, J. A. An experimental and numerical study of the performance of a model turbine. Wind Energy, 15(3), 443–457 (2012)

    Article  Google Scholar 

  45. SANTONI, C., CARRASQUILLO, K., ARENAS-NAVARRO, I., and LEONARDI, S. Effect of tower and nacelle on the flow past a wind turbine. Wind Energy, 20(12), 1927–1939 (2017)

    Article  Google Scholar 

  46. ZHANG, Z. Y., LI, C., and WANG, T. G. Numerical investigation and wind tunnel validation on near-wake vortical structures of wind turbine blades. Advances in Applied Mathematics & Mechanics, 8(4), 556–572 (2016)

    Article  MathSciNet  Google Scholar 

  47. XIAO, J. P., WU, J., CHEN, L., and SHI, Z. Y. Particle image velocimetry (PIV) measurements of tip vortex wake structure of wind turbine. Applied Mathematics and Mechanics (English Edition), 32(6), 729–738 (2011) https://doi.org/10.1007/s10483-011-1452-x

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to Gansu Computing Center for providing computing resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Li.

Additional information

Project supported by the National Key Research and Development Program of China (Nos. 2019YFE0192600, 2017YFE0132000, and 2019YFB1503700) and the National Natural Science Foundation of China (Nos. 51761135012 and 11872248)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Li, Y., Wang, T. et al. Recent improvements of actuator line-large-eddy simulation method for wind turbine wakes. Appl. Math. Mech.-Engl. Ed. 42, 511–526 (2021). https://doi.org/10.1007/s10483-021-2717-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-021-2717-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation