Skip to main content
Log in

Nonlocal thermoelastic analysis of a functionally graded material microbeam

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

In extreme heat transfer environments, functionally graded materials (FGMs) have aroused great concern due to the excellent thermal shock resistance. With the development of micro-scale devices, the size-dependent effect has become an important issue. However, the classical continuum mechanical model fails on the micro-scale due to the influence of the size-dependent effect. Meanwhile, for thermoelastic behaviors limited to small-scale problems, Fourier’s heat conduction law cannot explain the thermal wave effect. In order to capture the size-dependent effect and the thermal wave effect, the nonlocal generalized thermoelastic theory for the formulation of an FGM microbeam is adopted in the present work. For numerical validation, the transient responses for a simply supported FGM microbeam heated by the ramp-type heating are considered. The governing equations are formulated and solved by employing the Laplace transform techniques. In the numerical results, the effects of the ramp-heating time parameter, the nonlocal parameter, and the power-law index on the considered physical quantities are presented and discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GAYEN, D., TIWARI, R., and CHAKRABORTY, D. Static and dynamic analyses of cracked functionally graded structural components: a review. Composites Part B, 173, 106982 (2019)

    Article  Google Scholar 

  2. GUPTA, A. and TALHA, M. Recent development in modeling and analysis of functionally graded materials and structures. Progress in Aerospace Sciences, 79, 1–14 (2015)

    Article  Google Scholar 

  3. DAI, H. L., RAO, Y. N., and DAI, T. A review of recent researches on FGM cylindrical structures under coupled physical interactions, 2000–2015. Composite Structure, 152, 199–225 (2016)

    Article  Google Scholar 

  4. EOM, K., PARK, H. S., YOON, D. S., and KWON, T. Nanomechanical resonators and their applications in biological/chemical detection: nanomechanics principles. Physics Reports, 503, 115–163 (2011)

    Article  Google Scholar 

  5. LI, Y. L., MEGUID, S. A., FU, Y. M., and XU, D. L. Unified nonlinear quasistatic and dynamic analysis of RF-MEMS switches. Acta Mechanica, 224, 1741–1755 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. CURRANO, L. J., YU, M., and BALACHANDRAN, B. Latching in an MEMS shock sensor: modeling and experiments. Sensors and Actuators A, 159(1), 41–50 (2010)

    Article  Google Scholar 

  7. HUNG, E. S. and SENTURIA, S. D. Extending the travel range of analog-tuned electrostatic actuators. Journal of Microelectromechanical Systems, 8(4), 497–505 (1999)

    Article  Google Scholar 

  8. TORII, A., SASAKI, M., HANE, K., and OKUMA, S. Adhesive force distribution on microstructures investigated by an atomic force microscope. Sensors and Actuators A, 44(2), 153–158 (1994)

    Article  Google Scholar 

  9. YUAN, Y., ZHAO, K., SAHMANI, S., and SAFAEI, B. Size-dependent shear buckling response of FGM skew nanoplates modeled via different homogenization schemes. Applied Mathematics and Mechanics (English Edition), 41(4), 587–604 (2020) https://doi.org/10.1007/s10483-020-2600-6

    Article  MathSciNet  MATH  Google Scholar 

  10. NEJAD, M. Z., HADI, A., and RASTGOO, A. Buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nano-beams based on nonlocal elasticity theory. International Journal of Engineering Science, 103, 1–10 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. SAHMANI, S., AGHDAM, M. M., and RABCZUK, T. Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory. Composite Structure, 186(11), 68–78 (2018)

    Article  Google Scholar 

  12. ZHANG, P., QING, H., and GAO, C. F. Exact solutions for bending of Timoshenko curved nanobeams made of functionally graded materials based on stress-driven nonlocal integral model. Composite Structure, 245, 112362 (2020)

    Article  Google Scholar 

  13. RAHMANI, O. and PEDRAM, O. Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory. International Journal of Engineering Science, 77(7), 55–70 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. NEJAD, M. Z. and HADI, A. Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nano-beams. International Journal of Engineering Science, 105, 1–11 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. FLECK, N., MULLER, G., ASHBY, M., and HUTCHINSON, J. Strain gradient plasticity: theory and experiment. Acta Metallurgica et Materialia, 42(2), 475–487 (1994)

    Article  Google Scholar 

  16. NIX, W. D. Mechanical properties of thin films. Metallurgical and Materials Transactions A, 20(11), 2217–2245 (1989)

    Article  Google Scholar 

  17. MA, Q. and CLARKE, D. R. Size dependent hardness of silver single crystals. Journal of Materials Research, 10(4), 853–863 (1995)

    Article  Google Scholar 

  18. STÖLKEN, J. and EVANS, A. A microbend test method for measuring the plasticity length-scale. Acta Materialia, 46(14), 5109–5115 (1998)

    Article  Google Scholar 

  19. CHONG, A. C. M. and LAM, D. C. C. Strain gradient plasticity effect in indentation hardness of polymers. Journal of Material Research, 14(10), 4103–4110 (1999)

    Article  Google Scholar 

  20. ZHAO, M. H., SLAUGHTER, W. S., LI, M., and MAO, S. X. Material-length-scale-controlled nanoindentation size effects due to strain-gradient plasticity. Acta Materialia, 51(15), 4461–4469 (2003)

    Article  Google Scholar 

  21. BEEGAN, D., CHOWDHURY, S., and LAUGIER, M. T. Modification of composite hardness models to incorporate indentation size effects in thin films. Thin Solid Films, 516(12), 3813–3817 (2008)

    Article  Google Scholar 

  22. YU, Q., SHAN, Z. W., LI, J., HUANG, X. X., XIAO, L., SUN, J., and MA, E. Strong crystal size effect on deformation twinning. nature, 463(7279), 335–338 (2010)

    Article  Google Scholar 

  23. MARANGANTI, R. and SHARMA, P. Length scales at which classical elasticity breaks down for various materials. Physical Review Letters, 98(19), 195504 (2007)

    Article  Google Scholar 

  24. ERINGEN, A. C. Nonlocal Continuum Field Theories, Springer-Verlag, New York (2002)

    MATH  Google Scholar 

  25. AIFANTIS, E. C. Gradient deformation models at nano, micro and macro scales. Journal of Engineering Materials Technology, 121(2), 189–202 (1999)

    Article  Google Scholar 

  26. YANG, F., CHONG, A. C. M., LAM, D. C. C., and TONG, P. Couple stress based strain gradient theory for elasticity. International Journal of Solids Structures, 39(10), 2731–2743 (2002)

    Article  MATH  Google Scholar 

  27. PEDDIESON, J., BUCHANAN, G. R., and MCNITT, R. P. Application of nonlocal continuum models to nanotechnology. International Journal of Engineering Science, 41, 305–312 (2002)

    Article  Google Scholar 

  28. AREFI, M. and ZENKOUR, A. M. Influence of micro-length-scale parameter and inhomogeneities on the bending, free vibration and wave propagation analyses of an FG Timoshenko’s sandwich piezoelectric microbeam. Journal of Sandwich Structures and Materials, 21(4), 1243–1270 (2019)

    Article  Google Scholar 

  29. GHADIRI, M., HOSSEINI, S. H. S., and SHAFIEI, N. A power series for vibration of a rotating nanobeam with considering thermal effect. Mechanics of Advanced Materials and Structures, 23(12), 1414–1420 (2016)

    Article  Google Scholar 

  30. REDDY, J. N. Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. International Journal of Engineering Science, 48, 1507–1518 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. LIM, C. W. and YANG, Y. New predictions of size-dependent nanoscale based on nonlocal elasticity for wave propagation in carbon nanotubes. Journal of Computational and Theoretical Nanoscience, 7(6), 988–995 (2010)

    Article  Google Scholar 

  32. WANG, Q. and VARADAN, V. K. Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes. Smart Material and Structures, 16(1), 178–190 (2007)

    Article  Google Scholar 

  33. WANG, Q. Wave propagation in carbon nanotubes via nonlocal continuum mechanics. Journal of Applied Physics, 98(12), 124301 (2005)

    Article  Google Scholar 

  34. BIOT, M. A. Thermoelasticity and irreversible thermodynamics. Journal of Applied Physics, 27(3), 240–253 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  35. PESHKOV, V. Second sound in helium. Journal of Physical, 8, 381–386 (1944)

    Google Scholar 

  36. CATTANEO, C. A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Comptes Rendus Physique, 247, 431–433 (1958)

    MATH  Google Scholar 

  37. LORD, H. W. and SHULMAN, Y. A. A generalized dynamical theory of thermoelasticity. Journal of the Mechanics and Physics of Solids, 15, 299–309 (1967)

    Article  MATH  Google Scholar 

  38. GREEN, A. E. and LINDSAY, K. A. Thermoelasticity. Journal of Elasticity, 2, 1–7 (1972)

    Article  MATH  Google Scholar 

  39. GREEN, A. E. and NAGHDI, P. M. Thermoelasticity without energy dissipation. Journal of Elasticity, 31, 189–208 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  40. GREEN, A. E. and NAGHDI, P. M. On undamped heat waves in an elastic solid. Journal of Thermal Stresses, 15(2), 253–264 (1992)

    Article  MathSciNet  Google Scholar 

  41. MA, Y. B. and PENG, W. Dynamic response of an infinite medium with a spherical cavity on temperature-dependent properties subjected to a thermal shock under fractional-order theory of thermoelasticity. Journal of Thermal Stresses, 41(3), 302–312 (2018)

    Article  Google Scholar 

  42. HE, S. Q., PENG, W., MA, Y. B., and HE, T. H. Investigation on the transient response of a porous half-space with strain and thermal relaxations. European Journal of Mechanics A-Soilds, 84, 104064 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  43. ABOUELREGAL, A. E. Size-dependent thermoelastic initially stressed micro-beam due to a varying temperature in the light of the modified couple stress theory. Applied Mathematics and Mechanics (English Edition), 41(12), 1805–1820 (2020) https://doi.org/10.1007/s10483-020-2676-5

    Article  Google Scholar 

  44. HE, T. H., LI, C. L., and SHI, S. H. A two-dimensional generalized thermoelastic diffusion problem for a half-space. European Journal of Mechanics A-Soilds, 52(12), 37–43 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. LI, C. L., GUO, H. L., and TIAN, X. G. Soret effect on the shock responses of generalized diffusion-thermoelasticity. Journal of Thermal Stresses, 40(12), 1563–1574 (2017)

    Article  Google Scholar 

  46. ELHAGARY, M. A. A two-dimensional generalized thermoelastic diffusion problem for a thick plate subjected to thermal loading due to laser pulse. Journal of Thermal Stresses, 37(12), 1416–1432 (2014)

    Article  Google Scholar 

  47. BEREZOVSKI, A., ENGELBRECHT, J., and MAUGIN, G. A. Thermoelastic wave propagation in inhomogeneous media. Archive of Applied Mechanics, 70(10), 694–706 (2000)

    Article  MATH  Google Scholar 

  48. KUMAR, R. and DESWAL, S. Surface wave propagation in a micropolar thermoelastic medium without energy dissipation. Journal of Sound and Vibration, 256(1), 173–178 (2002)

    Article  Google Scholar 

  49. HE, T. H., TIAN, X. G., and SHEN, Y. P. A generalized electromagneto-thermoelastic problem for an infinitely long solid cylinder. European Journal of Mechanics A-Soilds, 24(2), 349–359 (2005)

    Article  MATH  Google Scholar 

  50. NAYFEH, A. H. and NEMAT-NASSER, S. Electromagneto-thermoelastic plane waves in solids with thermal relaxation. Journal of Applied Mechanics, 39(1), 108–113 (1972)

    Article  MATH  Google Scholar 

  51. MA, Y. B. and HE, T. H. The transient response of a functionally graded piezoelectric rod subjected to a moving heat source under fractional order theory of thermoelasticity. Mechanics of Advanced Materials and Structures, 24(9), 789–796 (2017)

    Article  Google Scholar 

  52. LI, Y. and HE, T. H. The transient response of a functionally graded half-space heated by a laser pulse based on the generalized thermoelasticity with memory dependent derivative. Mechanics of Advanced Materials and Structures (2020) https://doi.org/10.1080/15376494.2020.1731888

  53. YU, Y. J., TIAN, X. G., and XIONG, Q. L. Nonlocal thermoelasticity based on nonlocal heat conduction and nonlocal elasticity. European Journal of Mechanics A-Soilds, 60, 238–253 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  54. XI, Y. Y., LYU, Q., ZHANG, N. H., and WU, J. Z. Thermal-induced snap-through buckling of simply-supported functionally graded beams. Applied Mathematics and Mechanics (English Edition), 41(12), 1821–1832 (2020) https://doi.org/10.1007/s10483-020-2691-7

    Article  Google Scholar 

  55. NEJAD, M. Z. and HADI, A. Eringen’s non-local elasticity theory for bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams. International Journal of Engineering Science, 106, 1–9 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  56. LI, S. R., XU, X., and CHEN, S. Analysis of thermoelastic damping of functionally graded material resonators. Composite Structures, 182, 728–736 (2017)

    Article  Google Scholar 

  57. BRANCIK, L. Programs for fast numerical inversion of Laplace transforms in Matlab language environment. Proceedings of the 7th Conference MATLAB 99, Czech Republic, Prague, 27–39 (1999)

  58. HUANG, H. W. and HAN, Q. Nonlinear buckling and postbuckling of heated functionally graded cylindrical shells under combined axial compression and radial pressure. International Journal of Non-Linear Mechanics, 44(2), 209–218 (2009)

    Article  MATH  Google Scholar 

  59. NEMAT-ALLA, M., AHMED, K. I. E., and HASSAB-ALLAH, I. Elastic-plastic analysis of two-dimensional functionally graded materials under thermal loading. International Journal of Solids and Structures, 46(14), 2774–2786 (2009)

    Article  MATH  Google Scholar 

  60. SUN, Y. X., FANG, D. N., SAKA, M., and SOH, A. K. Laser-induced vibrations of micro-beams under different boundary conditions. International Journal of Solids and Structures, 45(7), 1993–2013 (2008)

    Article  MATH  Google Scholar 

  61. YOUSSEF, H. M. and ELSIBAL, K. A. State-space approach to vibration of gold nano-beam induced by ramp type heating. Nano-Micro Letters, 2(3), 139–148 (2010)

    Article  Google Scholar 

  62. YU, Y. J., TIAN, X. G., and LIU, X. R. Size-dependent generalized thermoelasticity using Erigen’s nonlocal model. European Journal of Mechanics A/Solids, 51, 96–106 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  63. ZHANG, P. and HE, T. H. A generalized thermoelastic problem with nonlocal effect and memory-dependent derivative when subjected to a moving heat source. Wave in Random and Complex Media, 30(1), 142–156 (2020)

    Article  MathSciNet  Google Scholar 

  64. LI, C. L., GUO, H. L., and TIAN, X. G. Shock-induced thermal wave propagation and response analysis of a viscoelastic thin plate under transient heating loads. Wave in Random and Comples Media, 28(2), 270–286 (2018)

    Article  Google Scholar 

  65. LIM, C. W., LI, C., and YU, J. L. Dynamic behaviour of axially moving nanobeams based on nonlocal elasticity approach. Acta Mechanica Sinica, 26(5), 755–765 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  66. LIM, C. W. On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection. Applied Mathematics and Mechanics (English Edition), 31(1), 37–54 (2010) https://doi.org/10.1007/s10483-010-0105-7

    Article  MathSciNet  MATH  Google Scholar 

  67. LI, C., LIM, C. W., and YU, J. L. Twisting statics and dynamics for circular elastic nanosolids by nonlocal elasticity theory. Acta Mechanica Solida Sinica, 24(6), 484–494 (2011)

    Article  Google Scholar 

  68. LI, C., YAO, L. Q., CHEN, W. Q., and LI, S. Comments on nonlocal effects in nano-cantilever beams. International Journal of Engineering Science, 87, 47–57 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianhu He.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11972176 and 12062011) and the Incubation Programme of Excellent Doctoral Dissertation-Lanzhou University of Technology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, W., Chen, L. & He, T. Nonlocal thermoelastic analysis of a functionally graded material microbeam. Appl. Math. Mech.-Engl. Ed. 42, 855–870 (2021). https://doi.org/10.1007/s10483-021-2742-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-021-2742-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation