Skip to main content

Advertisement

Log in

Bio-Marangoni convection flow of Casson nanoliquid through a porous medium in the presence of chemically reactive activation energy

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Bioconvection research is primarily focused on the augmentation of energy and mass species, which has implications in the processes intensification, mechanical, civil, electronics, and chemical engineering branches. Advanced bioconvection technology sectors include cooling systems for electronic devices, building insulation, and geothermal nuclear waste disposal. Hence, the present investigation is mainly discoursing the impact of Marangoni convention Casson nanoliquid flow under gyrotactic microorganisms over the porous sheet. The partial differential equations (PDEs) are re-structured into ordinary differential equations (ODEs) via suitable similar variables. These ODEs are numerically solved with the help of the spectral relaxation method (SRM). The numerical outcomes are illustrated graphically for various parameters over velocity, temperature, concentration, and bioconvection profiles. Three-dimensional (3D) views of important engineering parameters are illustrated for various parameters. The velocity of the Casson nanoliquid increases with increasing the Marangoni parameter but decreases against higher porosity parameter. The surface drag force enhances for enhancement in the Marangoni number. The rate of mass transmission is higher for reaction rate constraint but diminishes for activation energy parameter. The higher radiative values augment the rate of heat transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ψ (x, y):

stream function

\(\overline u ,\overline v \) :

velocity components

x, y :

coordinate axes

β :

casson parameter

ν :

kinematic viscosity

μ :

dynamic viscosity

ρ :

density

k :

thermal conductivity

c p :

specific heat

K* :

permeability of porous medium

\(\overline T \) :

temperature inside boundary layer

\({\overline T _{\rm{w}}}\) :

uniform constant temperature

\({\overline T _\infty }\) :

ambient temperature

\({\overline T _0}\) :

characteristic temperature

q r :

radiative heat flux

D B :

Brownian diffusion coefficient

l :

characteristic length

a :

stretching constant

\(K_{\rm{r}}^2\) :

reaction rate

E a :

activation energy

K :

Boltzmann’s constant

\(\overline C \) :

concentration

\({\overline C _{\rm{w}}}\) :

uniform constant concentration

\({\overline C _\infty }\) :

free stream concentration

\(\overline N \) :

concentration motile of microorganisms

σ :

surface tension

σ* :

Stephan-Boltzmann constant

k* :

mean absorption coefficient

D m :

microorganism diffusion coefficient

ρ c p :

heat capacitance

γT:

coefficient of temperature surface tension

C f :

skin friction coefficient

Nu :

Nusselt number

Sh :

Sherwood number

j w :

wall mass flux

τ w :

shear stress.

f:

base fluid

nf:

nanofluid

References

  1. CHOI, S. U. S. and EASTMAN, J. A. Enhancing thermal conductivity of fluids with nanoparticles. Conference: International Mechanical Engineering Congress and Exhibition, San Francisco, CA (1995)

  2. BUONGIORNO, J. Convective transport in nanofluids. Journal of Heat Transfer, 128, 240–250 (2006)

    Article  Google Scholar 

  3. TURKYILMAZOGLU, M. Fully developed slip flow in a concentric annuli via single and dual phase nanofluids models. Computer Methods and Programs in Biomedicine, 179, 104997 (2019)

    Article  Google Scholar 

  4. KHAN, M., Ahmed, J., Sultana, F., and SARFRAZ, M. Non-axisymmetric Homann MHD stagnation point flow of Al2O3-Cu/water hybrid nanofluid with shape factor impact. Applied Mathematics and Mechanics (English Edition), 41(5), 1125–1138 (2020) https://doi.org/10.1007/s10483-020-2611-5

    Article  MathSciNet  Google Scholar 

  5. JAFARIMOGHADDAM, A., TURKYILMAZOGLU, M., ROSCA, A. V., and POP, I. Complete theory of the elastic wall jet: a new flow geometry with revisited two-phase nanofluids. European Journal of Mechanics-B / Fluids, 86, 25–36 (2021)

    Article  MathSciNet  Google Scholar 

  6. TURKYILMAZOGLU, M. Nanoliquid film flow due to a moving substrate and heat transfer. The European Physical Journal Plus, 135, 781 (2020)

    Article  Google Scholar 

  7. RAMESH, G. K., PRASANNAKUMARA, B. C., GIREESHA, B. J., and RASHIDI, M. M. Casson fluid flow near the stagnation point over a stretching sheet with variable thickness and radiation. Journal of Applied Fluid Mechanics, 9, 1115–1022 (2016)

    Article  Google Scholar 

  8. ALI, L., LIU, X., ALI, B., MUJEED, S., and ABDAL, S. Finite element analysis of thermo-diffusion and multi-slip effects on MHD unsteady flow of Casson nano-fluid over a shrinking/stretching sheet with radiation and heat source. Applied Sciences, 9, 5217 (2019)

    Article  Google Scholar 

  9. IBRAHIM, W. and ANBESSA, T. Three-dimensional MHD mixed convection flow of Casson nanofluid with hall and ion slip effects. Mathematical Problems in Engineering, 2020, 8656147 (2020)

    MathSciNet  Google Scholar 

  10. KUMAR, R. N., GOWDA, R. J. P., MADHUKESH, J. K., PRASANNAKUMARA, B. C., and RAMESH, G. K. Impact of thermophoretic particle deposition on heat and mass transfer across the dynamics of Casson fluid flow over a moving thin needle. Physica Scripta, 96, 075210 (2021)

    Article  Google Scholar 

  11. KOTRESH, M. J., RAMESH, G. K., SHASHIKALA, V. K. R., and PRASANNAKUMARA, B. C. Assessment of Arrhenius activation energy in stretched flow of nanofluid over a rotating disc. Heat Transfer (2020) https://doi.org/10.1002/htj.22006

  12. KHAN, M. I., ALZAHRANI, F., HOBINY, A., and ALI, Z. Estimation of entropy generation in Carreau-Yasuda fluid flow using chemical reaction with activation energy. Journal of Materials and Research Technology, 9, 9951–9964 (2020)

    Article  Google Scholar 

  13. WAQAS, M., JABEEN, S., HAYAT, T., SHEHZAD, S. A., and ALSAEDI, A. Numerical simulation for nonlinear radiated Eyring-Powell nanofluid considering magnetic dipole and activation energy. International Communications in Heat and Mass Transfer, 112, 104401 (2020)

    Article  Google Scholar 

  14. KHAN, M. I. and ALZAHRANI, F. Activation energy and binary chemical reaction effect in nonlinear thermal radiative stagnation point flow of Walter-B nanofluid: numerical computations. International Journal of Modern Physics B, 34, 2050132 (2020)

    Article  MathSciNet  Google Scholar 

  15. RAMESH, G. K. Analysis of active and passive control of nanoparticles in viscoelastic nanomaterial inspired by activation energy and chemical reaction. Physica A: Statistical Mechanics and its Applications, 550, 123964 (2020)

    Article  MathSciNet  Google Scholar 

  16. AYUB, M., MALIK, M. Y., IJAZ, M., ALQARNI, M. S., and ALQAHTANI, A. S. Cattaneo-Christov double-diffusion model for viscoelastic nanofluid with activation energy and nonlinear thermal radiation. Multidiscipline Modeling in Materials and Structures, 16, 93–120 (2019)

    Article  Google Scholar 

  17. TURKYILMAZOGLU, M. Thermal radiation effects on the time-dependent MHD permeable flow having variable viscosity. International Journal of Thermal Sciences, 50, 88–96 (2011)

    Article  Google Scholar 

  18. AHMED, A., KHAN, M., IRFAN, M., and AHMED, J. Transient MHD flow of Maxwell nanofluid subject to non-linear thermal radiation and convective heat transport. Applied Nanoscience, 10, 5361–5373 (2020)

    Article  Google Scholar 

  19. MAKINDE, O. D. and ANIMASAUN, I. L. Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution. International Journal of Thermal Sciences, 109, 159–171 (2016)

    Article  Google Scholar 

  20. IJAZ, M., NADEEM, S., AYUB, M., and MANSOOR, S. Simulation of magnetic dipole on gyrotactic ferromagnetic fluid flow with nonlinear thermal radiation. Journal of Thermal Analysis and Calorimetery, 143, 2053–2067 (2021)

    Article  Google Scholar 

  21. SHEHZAD, S. A., REDDY, M. G., RAUF, A., and ABBAS, Z. Bioconvection of Maxwell nanofluid under the influence of double diffusive Cattaneo-Christov theories over isolated rotating disk. Physica Scripta, 95, 045207 (2020)

    Article  Google Scholar 

  22. ABBASI, A., MABOOD, F., FAROOQ, W., and BATOOL, M. Bioconvective flow of viscoelastic nanofluid over a convective rotating stretching disk. International Communications in Heat and Mass Transfer, 119, 104921 (2020)

    Article  Google Scholar 

  23. MAKINDE, O. D. and ANIMASAUN, I. L. Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution. Journal of Molecular Liquids, 221, 733–743 (2016)

    Article  Google Scholar 

  24. SHEHZAD, S. A., MUSHTAQ, T., ABBAS, Z., RAUF, A., KHAN, S. U., and TLILI, I. Dynamics of bioconvection flow of micropolar nanoparticles with Cattaneo-Christov expressions. Applied Mathematics and Mechanics, 41(9), 1333–1344 (2020) https://doi.org/10.1007/s10483-020-2645-9

    Article  MathSciNet  Google Scholar 

  25. RASOOL, G., SHAFIQ, A., and TLILI, I. Marangoni convective nanofluid flow over an electromagnetic actuator in the presence of first-order chemical reaction. Heat Transfer—Asian Research, 49, 274–288 (2020)

    Article  Google Scholar 

  26. REHMAN, A., GUL, T., SALLEH, Z., MUKHTAR, S., HUSSAIN, F., NISAR, K. S., and KUMAM, P. Effect of the Marangoni convection in the unsteady thin film spray of CNT nanofluids. Processes, 7, 7060392 (2019)

    Google Scholar 

  27. KHAN, M. I., QAYYUM, S., CHU, Y. M., KHAN, N. B., and KADRY, S. Transportation of Marangoni convection and irregular heat source in entropy optimized dissipative flow. International Communications in Heat and Mass Transfer, 120, 105031 (2021)

    Article  Google Scholar 

  28. SADIQ, M. A. and HAYAT, T. Characterization of Marangoni forced convection in Casson nanoliquid flow with Joule heating and irreversibility. Entropy, 22, 22040433 (2020)

    Article  MathSciNet  Google Scholar 

  29. RASHID, U., BALEANU, D., LIANG, H., ABBAS, M., IQBAL, A., and RAHMAN, J. Marangoni boundary layer flow and heat transfer of graphene-water nanofluid with particle shape effects. Processes, 8, 8091120 (2020)

    Article  Google Scholar 

  30. QAYYUM, S. Dynamics of Marangoni convection in hybrid nanofluid flow submerged in ethylene glycol and water base fluids. International Communications in Heat and Mass Transfer, 119, 104962 (2020)

    Article  Google Scholar 

  31. KHASHI’IE, N. S., ARIFIN, N. M., POP, I., NAZAR, R., HAFIDZUDDIN, E. H., and WAHI, N. Thermal Marangoni flow past a permeable stretching/shrinking sheet in a hybrid Cu-Al2O3/water nanofluid. Sains Malaysiana, 49, 211–222 (2020)

    Article  Google Scholar 

  32. SANKAD, G. C., MAHARUDRAPPPA, I., and DHANGE, M. Y. Bioconvection in Casson fluid flow with gyrotactic microorganisms and heat transfer over a linear stretching sheet in presence of magnetic field. Advances in Mathematics Scientific Journal, 10, 155–169 (2021)

    Article  Google Scholar 

  33. COLIN, S. International journal of heat and technology: foreword. International Journal of Heat and Technology, 26, 107 (2008)

    Google Scholar 

  34. ALWAWI, F. A., ALKASASBEH, H. T., RASHAD, A. M., and IDRIS, R. Natural convection flow of sodium alginate based Casson nanofluid about a solid sphere in the presence of a magnetic field with constant surface heat flux. Journal of Physics: Conference Series, 1366, 012005 (2019)

    Google Scholar 

  35. MOTSA, S. S. A new spectral relaxation method for similarity variable nonlinear boundary layer flow systems. Chemical Engineering Communications, 201, 241–256 (2014)

    Article  Google Scholar 

  36. ETWIRE, C. J., SEINI, I. Y., RABIU, M., and MAKINDE, O. D. Impact of thermophoretic transport of Al2O3 nanoparticles on viscoelastic flow of oil-based nanofluid over a porous exponentially stretching surface with activation energy. Engineering Transactions, 67, 387–410 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors appreciate the editors and referees for the positive feedback and helpful suggestions, which improve the manuscript’s presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Shehzad.

Additional information

Citation: MADHUKESH, J. K., RAMESH, G. K., PRASANNAKUMARA, B. C., SHEHZAD, S. A., and ABBASI, F. M. Bio-Marangoni convection flow of Casson nanoliquid through a porous medium in the presence of chemically reactive activation energy. Applied Mathematics and Mechanics (English Edition), 42(8), 1191–1204 (2021) https://doi.org/10.1007/s10483-021-2753-7

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhukesh, J.K., Ramesh, G.K., Prasannakumara, B.C. et al. Bio-Marangoni convection flow of Casson nanoliquid through a porous medium in the presence of chemically reactive activation energy. Appl. Math. Mech.-Engl. Ed. 42, 1191–1204 (2021). https://doi.org/10.1007/s10483-021-2753-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-021-2753-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation