Skip to main content
Log in

Dynamics of Sutterby fluid flow due to a spinning stretching disk with non-Fourier/Fick heat and mass flux models

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The magnetohydrodynamic Sutterby fluid flow instigated by a spinning stretchable disk is modeled in this study. The Stefan blowing and heat and mass flux aspects are incorporated in the thermal phenomenon. The conventional models for heat and mass flux, i.e., Fourier and Fick models, are modified using the Cattaneo-Christov (CC) model for the more accurate modeling of the process. The boundary layer equations that govern this problem are solved using the apt similarity variables. The subsequent system of equations is tackled by the Runge-Kutta-Fehlberg (RKF) scheme. The graphical visualizations of the results are discussed with the physical significance. The rates of mass and heat transmission are evaluated for the augmentation in the pertinent parameters. The Stefan blowing leads to more species diffusion which in turn increases the concentration field of the fluid. The external magnetism is observed to decrease the velocity field. Also, more thermal relaxation leads to a lower thermal field which is due to the increased time required to transfer the heat among fluid particles. The heat transport is enhanced by the stretching of the rotating disk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SUTTERBY, J. L. Laminar converging flow of dilute polymer solutions in conical sections: part I, viscosity data, new viscosity model, tube flow solution. AIChE Journal, 12, 63–68 (1966)

    Article  Google Scholar 

  2. REHMAN, S., MIR, N. A., ALQARNI, M. S., FAROOQ, M., and MALIK, M. Y. Analysis of heat generation/absorption in thermally stratified Sutterby fluid flow with Cattaneo-Christov theory. Microsystem Technologies, 25, 3365–3373 (2019)

    Article  Google Scholar 

  3. HAYAT, T., BIBI, F., KHAN, A. A., and ALSAEDI, A. Entropy production minimization and non-Darcy resistance within wavy motion of Sutterby liquid subject to variable physical characteristics. Journal of Thermal Analysis and Calorimetry, 143, 2215–2225 (2021)

    Article  Google Scholar 

  4. IMRAN, N., JAVED, M., SOHAIL, M., THOUNTHONG, P., and ABDELMALEK, Z. Theoretical exploration of thermal transportation with chemical reactions for Sutterby fluid model obeying peristaltic mechanism. Journal of Materials Research and Technology, 9, 7449–7459 (2020)

    Article  Google Scholar 

  5. USMAN, M., LIN, P., and GHAFFARI, A. Heat and mass transfer in a steady flow of Sutterby nanofluid over the surface of a stretching wedge. Physica Scripta, 96, 065003 (2021)

    Article  Google Scholar 

  6. HAYAT, T., KHAN, A. A., BIBI, F., and ALSAEDI, A. Entropy minimization for magneto peristaltic transport of Sutterby materials subject to temperature dependent thermal conductivity and non-linear thermal radiation. International Communications in Heat and Mass Transfer, 122, 105009 (2021)

    Article  Google Scholar 

  7. KARMAN, T. V. Classical problem of rotating disk. Transfer ASME, 61, 705 (1939)

    Google Scholar 

  8. MAHANTHESH, B., GIREESHA, B. J., ANIMASAUN, I. L., MUHAMMAD, T., and SHASHIKUMAR, N. S. MHD flow of SWCNT and MWCNT nanoliquids past a rotating stretchable disk with thermal and exponential space dependent heat source. Physica Scripta, 94, 085214 (2019)

    Article  Google Scholar 

  9. NAZ, R., MABOOD, F., SOHAIL, M., and TLILI, I. Thermal and species transportation of Eyring-Powell material over a rotating disk with swimming microorganisms: applications to metallurgy. Journal of Materials Research and Technology, 9, 5577–5590 (2020)

    Article  Google Scholar 

  10. KHAN, M. I., WAQAS, H., FAROOQ, U., KHAN, S. U., CHU, Y., and KADRY, S. Assessment of bioconvection in magnetized Sutterby nanofluid configured by a rotating disk: a numerical approach. Modern Physics Letters B, 35, 2150202 (2021)

    Article  MathSciNet  Google Scholar 

  11. HAFEEZ, A., KHAN, M., AHMED, A., and AHMED, J. Rotational flow of Oldroyd-B nanofluid subject to Cattaneo-Christov double diffusion theory. Applied Mathematics and Mechanics (English Edition), 41(7), 1083–1094 (2020) https://doi.org/10.1007/s10483-020-2629-9

    Article  Google Scholar 

  12. AHMED, A., KHAN, M., AHMED, J., and HAFEEZ, A. Von Kármán rotating flow of Maxwell nanofluids featuring the Cattaneo-Christov theory with a Buongiorno model. Applied Mathematics and Mechanics (English Edition), 41(8), 1195–1208 (2020) https://doi.org/10.1007/s10483-020-2632-8

    Article  MathSciNet  Google Scholar 

  13. SARKAR, G. M. and SAHOO, B. On dual solutions of the unsteady MHD flow on a stretchable rotating disk with heat transfer and a linear temporal stability analysis. European Journal of Mechanics-B/Fluids, 85, 149–157 (2021)

    Article  MathSciNet  Google Scholar 

  14. WAQAS, M. A study on magneto-hydrodynamic non-Newtonian thermally radiative fluid considering mixed convection impact towards convective stratified surface. International Communications in Heat and Mass Transfer, 126, 105262 (2021)

    Article  Google Scholar 

  15. FOURIER, J. B. J. Theorie Analytique de la chaleur, Gauthiers-Villars, Paris (1888)

    MATH  Google Scholar 

  16. CATTANEO, C. Sulla conduzione del calore. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia, 3, 83–101 (1948)

    MathSciNet  MATH  Google Scholar 

  17. CHRISTOV, C. I. On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mechanics, Research Communications, 36, 481–486 (2009)

    Article  MathSciNet  Google Scholar 

  18. STRAUGHAN, B. Thermal convection with the Cattaneo-Christov model. International Journal of Heat and Mass Transfer, 53, 95–98 (2010)

    Article  Google Scholar 

  19. KHAN, M. I., KHAN, M. I., ALZAHRANI, F., HOBINY, A., and ALI, Z. Modeling of Cattaneo-Christov double diffusions (CCDD) in Williamson nanomaterial slip flow subject to porous medium. Journal of Materials Research and Technology, 9, 6172–6177 (2020)

    Article  Google Scholar 

  20. HAFEEZ, A. and KHAN, M. Flow of Oldroyd-B fluid caused by a rotating disk featuring the Cattaneo-Christov theory with heat generation/absorption. International Communications in Heat and Mass Transfer, 123, 105179 (2021)

    Article  Google Scholar 

  21. HAYAT, T., KHAN, S. A., KHAN, M. I., MOMANI, S., and ALSAEDI, A. Cattaneo-Christov (CC) heat flux model for nanomaterial stagnation point flow of Oldroyd-B fluid. Computer Methods and Programs in Biomedicine, 187, 105247 (2020)

    Article  Google Scholar 

  22. ABID, N., RAMZAN, M., CHUNG, J. D., KADRY, S., and CHU, Y. M. Comparative analysis of magnetized partially ionized copper, copper oxide-water and kerosene oil nanofluid flow with Cattaneo-Christov heat flux. Scientific Reports, 10, 19300 (2020)

    Article  Google Scholar 

  23. ALI, B., HUSSEIN, S., NIE, Y., HUSSEIN, A. K., and HABIB, D. Finite element investigation of Dufour and Soret impacts on MHD rotating flow of Oldroyd-B nanofluid over a stretching sheet with double diffusion Cattaneo Christov heat flux model. Powder Technology, 377, 439–452 (2021)

    Article  Google Scholar 

  24. IBRAHIM, W. and GADISA, G. Finite element solution of nonlinear convective flow of Oldroyd-B fluid with Cattaneo-Christov heat flux model over nonlinear stretching sheet with heat generation or absorption. Propulsion and Power Research, 9, 304–315 (2020)

    Article  Google Scholar 

  25. ALAMRI, S. Z., ELLAHI, R., SHEHZAD, N., and ZEESHAN, A. Convective radiative plane Poiseuille flow of nanofluid through porous medium with slip: an application of Stefan blowing. Journal of Molecular Liquids, 273, 292–304 (2019)

    Article  Google Scholar 

  26. BEG, O. A., ZOHRA, F. T., UDDIN, M. J., ISMAIL, A. I. M., and SATHASIVAM, S. Energy conservation of nanofluids from a biomagnetic needle in the presence of Stefan blowing: Lie symmetry and numerical simulation. Case Studies in Thermal Engineering, 24, 100861 (2021)

    Article  Google Scholar 

  27. ABDELMALEK, Z., MAHANTHESH, B., BASIR, M. F. M., IMTIAZ, M., MACKOLIL, J., KHAN, N. S., NABWEY, H. A., and TLILI, I. Mixed radiated magneto Casson fluid flow with Arrhenius activation energy and Newtonian heating effects: flow and sensitivity analysis. Alexandria Engineering Journal, 59, 3991–4011 (2020)

    Article  Google Scholar 

  28. ALI, B., HUSSAIN, S., ABDAL, S., and MEHDI, M. M. Impact of Stefan blowing on thermal radiation and Cattaneo-Christov characteristics for nanofluid flow containing microorganisms with ablation/accretion of leading edge: FEM approach. The European Physical Journal Plus, 135, 10 (2020)

    Article  Google Scholar 

  29. UDDIN, M. J., KABIR, M. N., and BEG, O. A. Computational investigation of Stefan blowing and multiple-slip effects on buoyancy-driven bioconvection nanofluid flow with microorganisms. International Journal of Heat and Mass Transfer, 95, 116–130 (2016)

    Article  Google Scholar 

  30. BASIR, M. F. M., BILAL, M., CHOUDHARY, R., MACKOLIL, J., MAHANTHESH, B., and NISAR, K. S. Numerical and sensitivity analysis of MHD bioconvective slip flow of nanomaterial with binary chemical reaction and Newtonian heating. Heat Transfer, 50, 5439–5466 (2021)

    Article  Google Scholar 

  31. KHAN, M. I., QAYYUM, S., and HAYAT, T. Stratified flow of Sutterby fluid with homogeneous-heterogeneous reactions and Cattaneo-Christov heat flux. International Journal of Numerical Methods for Heat & Fluid Flow, 29, 2977–2992 (2019)

    Article  Google Scholar 

  32. LATIFF, N. A., UDDIN, M. U., and ISMAIL, A. I. M. Stefan blowing effect on bioconvective flow of nanofluid over a solid rotating stretchable disk. Propulsion of Power Research, 5, 267–278 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rauf.

Additional information

Citation: MABOOD, F., MACKOLIL, J., MAHANTHESH, B., RAUF, A., and SHEHZAD, S. A. Dynamics of Sutterby fluid flow due to a spinning stretching disk with non-Fourier/Fick heat and mass flux models. Applied Mathematics and Mechanics (English Edition), 42(9), 1247–1258 (2021) https://doi.org/10.1007/s10483-021-2770-9

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mabood, F., Mackolil, J., Mahanthesh, B. et al. Dynamics of Sutterby fluid flow due to a spinning stretching disk with non-Fourier/Fick heat and mass flux models. Appl. Math. Mech.-Engl. Ed. 42, 1247–1258 (2021). https://doi.org/10.1007/s10483-021-2770-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-021-2770-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation