Skip to main content
Log in

Optimization of heat transfer in the thermal Marangoni convective flow of a hybrid nanomaterial with sensitivity analysis

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The heat transfer rate of the thermal Marangoni convective flow of a hybrid nanomaterial is optimized by using the response surface methodology (RSM). The thermal phenomenon is modeled in the presence of a variable inclined magnetic field, thermal radiation, and an exponential heat source. Experimentally estimated values of the thermal conductivity and viscosity of the hybrid nanomaterial are utilized in the calculation. The governing intricate nonlinear problem is treated numerically, and a parametric analysis is carried out by using graphical visualizations. A finite difference-based numerical scheme is utilized in conjunction with the 4-stage Lobatto IIIa formula to solve the nonlinear governing problem. The interactive effects of the pertinent parameters on the heat transfer rate are presented by plotting the response surfaces and the contours obtained from the RSM. The mono and hybrid nanomaterial flow fields are compared. The hybrid nanomaterial possesses enhanced thermal fields for nanoparticle volume fractions less than 2%. The irregular heat source and the thermal radiation enhance the temperature profiles. The high level of the thermal radiation and the low levels of the exponential heat source and the angle of inclination (of the magnetic field) lead to the optimized heat transfer rate (Nux = 7.462 75).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHOI, S. U. S. and EASTMAN, J. A. Enhancing thermal conductivity of fluids with nanoparticles. Proceedings of the 1995 International Mechanical Engineering Congress and Exposition, ASME, San Francisco, 66, 99–105 (1995)

    Google Scholar 

  2. HAYAT, T., KHAN, M. I., FAROOQ, M., ALSAEDI, A., and YASMEEN, T. Impact of Marangoni convection in the flow of carbon-water nanofluid with thermal radiation. International Journal of Heat and Mass Transfer, 106, 810–815 (2017)

    Article  Google Scholar 

  3. KUZNETSOV, A. V. and NIELD, D. A. Natural convective boundary-layer flow of a nanofluid past a vertical plate. International Journal of Thermal Sciences, 49, 243–247 (2010)

    Article  Google Scholar 

  4. MEBAREK-OUDINA, F. Convective heat transfer of titania nanofluids of different base fluids in cylindrical annulus with discrete heat source. Heat Transfer-Asian Research, 48, 135–147 (2019)

    Article  Google Scholar 

  5. BERREHAL, H., MABOOD, F., and MAKINDE, O. D. Entropy-optimized radiating water/FCNTs nanofluid boundary-layer flow with convective condition. The European Physical Journal Plus, 135, 1–21 (2020)

    Article  Google Scholar 

  6. AHMED, A., KHAN, M., and AHMED, J. Thermal analysis in swirl motion of Maxwell nanofluid over a rotating circular cylinder. Applied Mathematics and Mechanics (English Edition), 41(9), 1417–1430 (2020) https://doi.org/10.1007/s10483-020-2643-7

    Article  MathSciNet  Google Scholar 

  7. RANA, P., SHEHZAD, S. A., AMBREEN, T., and SELIM, M. M. Numerical study based on CVFEM for nanofluid radiation and magnetized natural convected heat transportation. Journal of Molecular Liquids, 334, 116102 (2021)

    Article  Google Scholar 

  8. CHU, Y., KHAN, M. I., REHMAN, M. I. U., KADRY, S., QAYYUM, S., and WAQAS, M. Stability analysis and modeling for the three-dimensional Darcy-Forchheimer stagnation point nanofluid flow towards a moving surface. Applied Mathematics and Mechanics (English Edition), 42(3), 357–370 (2021) https://doi.org/10.1007/s10483-021-2700-7

    Article  MathSciNet  Google Scholar 

  9. MAHANTHESH, B., SHASHIKUMAR, N. S., and LORENZINI, G. Heat transfer enhancement due to nanoparticles, magnetic field, thermal and exponential space-dependent heat source aspects in nanoliquid flow past a stretchable spinning disk. Journal of Thermal Analysis and Calorimetry, 145, 3339–3347 (2021)

    Article  Google Scholar 

  10. SURESH, S., VENKITARAJ, K. P., SELVAKUMAR, P., and CHANDRASEKAR, M. Synthesis of Al2O3-Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 388, 41–48 (2011)

    Article  Google Scholar 

  11. WAINI, I., ISHAK, A., and POP, I. Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid. International Journal of Heat and Mass Transfer, 136, 288–297 (2019)

    Article  Google Scholar 

  12. MASKEEN, M. M., ZEESHAN, A., MEHMOOD, O. U., and HASSAN, M. Heat transfer enhancement in hydromagnetic alumina-copper/water hybrid nanofluid flow over a stretching cylinder. Journal of Thermal Analysis and Calorimetry, 138, 1127–1136 (2019)

    Article  Google Scholar 

  13. ALADDIN, N. A. L., BACHOK, N., and POP, I. Cu-Al2O3/water hybrid nanofluid flow over a permeable moving surface in presence of hydromagnetic and suction effects. Alexandria Engineering Journal, 59, 657–666 (2020)

    Article  Google Scholar 

  14. MEHRYAN, S. A., KASHKOOLI, F. M., GHALAMBAZ, M., and CHAMKHA, A. J. Free convection of hybrid Al2O3-Cu water nanofluid in a differentially heated porous cavity. Advanced Powder Technology, 28, 2295–2305 (2017)

    Article  Google Scholar 

  15. SHAH, N. A., ANIMASAUN, I. L., WAKIF, A., KORIKO, O. K., SIVARAJ, R., ADEGBIE, K. S., and PRASAD, K. V. Significance of suction and dual stretching on the dynamics of various hybrid nanofluids: comparative analysis between type I and type II models. Physica Scripta, 95, 095205 (2020)

    Article  Google Scholar 

  16. WAQAS, H., FAROOQ, U., ALGHAMDI, M., MUHAMMAD, T., and ALSHOMRANI, A. S. On the magnetized 3D flow of hybrid nanofluids utilizing nonlinear radiative heat transfer. Physica Scripta, 96, 095202 (2021)

    Article  Google Scholar 

  17. BHATTI, M. M., ABBAS, T., RASHIDI, M. M., and ALI, M. E. S. Numerical simulation of entropy generation with thermal radiation on MHD Carreau nanofluid towards a shrinking sheet. Entropy, 18, 200 (2016)

    Article  MathSciNet  Google Scholar 

  18. SHAH, Z., DAWAR, A., KUMAM, P., KHAN, W., and ISLAM, S. Impact of nonlinear thermal radiation on MHD nanofluid thin film flow over a horizontally rotating disk. Applied Sciences, 9, 1533 (2019)

    Article  Google Scholar 

  19. QURESHI, M. A. Numerical simulation of heat transfer flow subject to MHD of Williamson nanofluid with thermal radiation. Symmetry, 13, 10 (2021)

    Article  Google Scholar 

  20. MAMOURIAN, M., SHIRVAN, K. M., and MIRZAKHANLARI, S. Two phase simulation and sensitivity analysis of effective parameters on turbulent combined heat transfer and pressure drop in a solar heat exchanger filled with nanofluid by response surface methodology. Energy, 109, 49–61 (2016)

    Article  Google Scholar 

  21. BIJAN, D. SAMAN, R., and JAVAD, A. E. Sensitivity analysis of entropy generation in nanofluid flow inside a channel by response surface methodology. Entropy, 18, 52 (2016)

    Article  Google Scholar 

  22. MACKOLIL, J. and MAHANTHESH, B. Inclined magnetic field and nanoparticle aggregation effects on thermal Marangoni convection in nanoliquid: a sensitivity analysis. Chinese Journal of Physics, 69, 24–37 (2021)

    Article  MathSciNet  Google Scholar 

  23. MACKOLIL, J. and MAHANTHESH, B. Heat transfer enhancement using temperature-dependent effective properties of alumina-water nanoliquid with thermo-solutal Marangoni convection: a sensitivity analysis. Applied Nanoscience (2021) https://doi.org/10.1007/s13204-020-01631-4

  24. SHAMPINE, L. F. and KIERZENKA, J. A BVP solver that controls residual and error. Journal of Numerical Analysis, Industrial and Applied Mathematics, 3, 27–41 (2008)

    MathSciNet  MATH  Google Scholar 

  25. ARIFIN, N. M., NAZAR, R., and POP, I. Non-isobaric Marangoni boundary layer flow for Cu, Al2O3 and TiO2 nanoparticles in a water-based fluid. Meccanica, 46, 833–843 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The authors thank the management of CHRIST (Deemed to be University), Bangalore, India for encouragement and support. The authors are also grateful to the editors and anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mahanthesh.

Additional information

Citation: MACKOLIL, J. and MAHANTHESH, B. Optimization of heat transfer in the thermal Marangoni convective flow of a hybrid nanomaterial with sensitivity analysis. Applied Mathematics and Mechanics (English Edition), 42(11), 1663–1674 (2021) https://doi.org/10.1007/s10483-021-2784-6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mackolil, J., Mahanthesh, B. Optimization of heat transfer in the thermal Marangoni convective flow of a hybrid nanomaterial with sensitivity analysis. Appl. Math. Mech.-Engl. Ed. 42, 1663–1674 (2021). https://doi.org/10.1007/s10483-021-2784-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-021-2784-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation