Skip to main content
Log in

A Methodology of Analysis for Monitoring Treatment Progression with 19-Channel Z-Score Neurofeedback (19ZNF) in a Single-Subject Design

  • Published:
Applied Psychophysiology and Biofeedback Aims and scope Submit manuscript

Abstract

19-Channel Z-Score Neurofeedback (19ZNF) is a modality using 19-electrodes with real-time normative database z-scores, suggesting effective clinical outcomes in fewer sessions than traditional neurofeedback. Thus, monitoring treatment progression and clinical outcome is necessary. The area of focus in this study was a methodology of quantitative analysis for monitoring treatment progression and clinical outcome with 19ZNF. This methodology is noted as the Sites-of-Interest, which included repeated measures analyses of variance (rANOVA) and t-tests for z-scores; it was conducted on 10 cases in a single subject design. To avoid selection bias, the 10 sample cases were randomly selected from a pool of 17 cases that met the inclusion criteria. Available client outcome measures (including self-report) are briefly discussed. The results showed 90 % of the pre-post comparisons moved in the targeted direction (z = 0) and of those, 96 % (80 % Bonferroni corrected) of the t-tests and 96 % (91 % Bonferroni corrected) of the rANOVAs were statistically significant; thus indicating a progression towards the mean in 15 or fewer 19ZNF sessions. All cases showed and reported improvement in all outcome measures (including quantitative electroencephalography assessment) at case termination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The surface potential 19ZNF described in this work should not be confused with low-resolution electromagnetic tomography (LORETA) ZNF described elsewhere in the literature. LORETA, a form of QEEG, can provide source localization, with three dimensional images, similar to those generated by fMRI data (Thatcher 2013).

  2. Definitions of the 19ZNF session-specific protocols used in these cases are as follows: Setting 1 used the Neuroguide-NF1 software, using the linked-ears montage; some with and some without the Symptom Checklist option. Setting 2 used the Neuroguide-NF1 software, using the laplacian montage (Symptom Checklist is not an option with this montage). Setting 3 used the Brainmaster-Discovery PZOK software module. All 19ZNF sessions used the Brainmaster Flashgame visual NF displays and discrete auditory reward tones.

References

  • American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed., text rev.). Washington, DC: American Psychiatric Publishing.

  • Arns, M., de Ridder, S., Strehl, U., Breteler, M., & Coenen, A. (2009). Efficacy of neurofeedback treatment in ADHD: The effects on inattention, impulsivity and hyperactivity: A meta-analysis. Clinical EEG and Neuroscience Journal, 40, 180–189.

    Article  Google Scholar 

  • Arns, M., Drinkenburg, W., & Kenemans, J. L. (2012). The effects of QEEG-informed neurofeedback in ADHD: An open-label pilot study. Applied Psychophysiology and Biofeedback, 37, 171–180.

    Article  PubMed Central  PubMed  Google Scholar 

  • Arns, M., Heinrich, H., & Strehl, U. (2014). Evaluation of neurofeedback in ADHD: The long and winding road. Biological Psychology, 9, 108–111.

    Article  Google Scholar 

  • Breteler, M. H. M., Arns, M., Sylvia Peters, S., Giepmans, I., & Verhoeven, L. (2010). Improvements in spelling after QEEG-based neurofeedback in dyslexia: A randomized controlled treatment study. Applied Psychophysiology and Biofeedback, 35, 5–11.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cannon, R. L., Baldwin, D. R., Shaw, T. L., Diloreto, D. J., Phillips, S. M., Scruggs, A. M., & Riehl, T. C. (2012). Reliability of quantitative EEG (qEEG) measures and LORETA current source density at 30 days. Neuroscience Letters, 518, 27–31.

    Article  PubMed  Google Scholar 

  • Collura, T. F. (2014). Technical foundations of neurofeedback. New York, NY: Routledge.

    Google Scholar 

  • Collura, T. F., Guan, J. G., Tarrant, J., Bailey, J., & Starr, F. (2010). EEG biofeedback case studies using live z-score training and a normative database. Journal of Neurotherapy, 14, 22–46.

    Article  Google Scholar 

  • Collura, T. F., Thatcher, R. W., Smith, M. L., Lambos, W. A., & Stark, C. R. (2009). EEG biofeedback training using live z-scores and a normative database. In T. H. Budzynski, H. K. Budzynski, J. R. Evans, & A. A. Abarbanel (Eds.), Introduction to quantitative EEG and neurofeedback: Advanced theory and applications (2nd ed., pp. 29–59). Burlington, MA: Elsevier.

    Google Scholar 

  • Gasser, T., Bacher, P., & Steinberg, H. (1985). Test-retest reliability of spectral parameters of the EEG. Electroencephalography and Clinical Neurophysiology, 60, 312–319.

    Article  PubMed  Google Scholar 

  • Hallman, D. W. (2012). 19-Channel neurofeedback in an adolescent with FASD. Journal of Neurotherapy, 16, 150–154.

    Article  Google Scholar 

  • Hammer, B., Colbert, A., Brown, K., & Ilioi, E. (2011). Neurofeedback for insomnia: A pilot study of z-score SMR and individualized protocols. Applied Psychophysiology and Biofeedback, 36, 251–264.

    Article  PubMed  Google Scholar 

  • Koberda, J. L. (2014). Z-Score LORETA neurofeedback as a potential therapy in cognitive dysfunction and dementia. Journal of Psychology and Clinical Psychiatry, 1(6), 1–11. doi:10.15406/jpcpy.2014.01.00037. 00037.

    Article  Google Scholar 

  • Koberda, J. L., Koberda, P., Bienkiewicz, A. A., Moses, A., & Koberda, L. (2013). Pain management using 19-electrode z-score LORETA neurofeedback. Journal of Neurotherapy, 17(3), 179–190. doi:10.1080/10874208.2013.813204.

    Article  Google Scholar 

  • Koberda, J. L., Moses, A., Koberda, P., & Koberda, L. (2012a). Comparison of the effectiveness of z-score surface/LORETA 19-electrodes neurofeedback to standard 1-electrode neurofeedback. Oral presentation at the 20th annual conference of the International Society for Neurofeedback and Research, Orlando, FL.

  • Koberda, J. L., Moses, A., Koberda, L., & Koberda, P. (2012b). Cognitive enhancement using 19-electrode z-score neurofeedback. Journal of Neurotherapy, 16(3), 224–230. doi:10.1080/10874208.2012.705770.

    Article  Google Scholar 

  • Koberda, J. L., & Stodolska-Koberda, U. (2014). Z-score LORETA neurofeedback as a potential rehabilitation modality in patients with CVA. Journal of Neurology and Stroke, 1(5), 00029. 1–5.

    Google Scholar 

  • Krigbaum, G. (2013). Abnormal psychology in a multicultural context. In: Plante, T., (Ed.), Abnormal psychology across the ages, Vol. I: History and conceptualization, Vol. II: Disorders and treatments, Vol. III: Future directions and current trends, (Vol. III, Chap. 14). Santa Barbara, CA: Praeger/ABC-CLIO.

  • Rutter, P. (2011). Potential clinical applications for 19 channel live z-score training using Percent ZOK and ZPlus protocols. Oral presentation at the 19th annual conference of the International Society for Neurofeedback and Research, Carefree, AZ.

  • Salinsky, M. C., Oken, B. S., & Morehead, L. (1991). Test-retest reliability in EEG frequency analysis. Electroencephalography and Clinical Neurophysiology, 79, 382–392.

    Article  PubMed  Google Scholar 

  • Surmeli, T., & Ertem, A. (2009). QEEG guided neurofeedback therapy in personality disorders: 13 case studies. Clinical EEG and Neuroscience Journal, 40, 5–10.

    Article  Google Scholar 

  • Surmeli, T., & Ertem, A. (2011). Obsessive compulsive disorder and the efficacy of qEEG-Guided neurofeedback treatment: A case series. Clinical EEG and Neuroscience Journal, 42, 195–201.

    Article  Google Scholar 

  • Surmeli, T., Ertem, A., Eralp, E., & Kos, I. H. (2012). Schizophrenia and the efficacy of qEEG-Guided neurofeedback treatment: A clinical case series. Clinical EEG and Neuroscience, 43, 133–144.

    Article  PubMed  Google Scholar 

  • Thatcher, R. W. (2012). Handbook of quantitative electroencephalography and EEG biofeedback. St. Petersburg, FL: Anipublishing.

    Google Scholar 

  • Thatcher, R. W. (2013). Latest developments in live z-score training: Symptom check list, phase reset, and LORETA z-score biofeedback. Journal of Neurotherapy, 17, 69–87.

    Article  Google Scholar 

  • Thatcher, R. W., & Lubar, J. E. (2009). History of the scientific standards of qEEG normative databases. In T. H. Budzynski, H. K. Budzynski, J. R. Evans, & A. A. Abarbanel (Eds.), Introduction to quantitative EEG and neurofeedback: Advanced theory and applications (2nd ed., pp. 29–59). Burlington, MA: Elsevier.

    Chapter  Google Scholar 

  • Valenzuela, S., & Krigbaum, G. (2013). Psychosurgery through the ages: From lobotomy to deep brain stimulation. In: Plante, T., (Ed.), Abnormal psychology across the ages, Vol. I: History and conceptualization, Vol. II: Disorders and treatments, Vol. III: Future directions and current trends, (Vol. II, Chap. 14). Santa Barbara, CA: Praeger/ABC-CLIO.

  • van Boxtel, G. J. M., & Gruzelier, J. H. (2014). Neurofeedback: Introduction to the special issue. Biological Psychology, 95, 1–3. doi:10.1016/j.biopsycho.2013.11.011.

    Article  PubMed  Google Scholar 

  • Vialatte, F., & Cichocki, A. (2008). Split-test Bonferroni correction for QEEG statistical maps. Biological Cybernetics, 98(4), 295–303. doi:10.1007/s00422-008-0210-8.

    Article  PubMed  Google Scholar 

  • Walker, J. (2009). Anxiety associated with post-traumatic stress disorder—The role of quantitative electroencephalograph in diagnosis and in guiding neurofeedback training to remediate the anxiety. Biofeedback, 37, 67–70.

    Article  Google Scholar 

  • Walker, J. (2010). Recent advances in quantitative EEG as an aid to diagnosis and as a guide to neurofeedback training for cortical hypofunctions, hyperfunctions, disconnections, and hyperconnections: Improving efficacy in complicated neurological and psychological disorders. Applied Psychophysiology and Biofeedback, 35, 25–27.

    Article  PubMed  Google Scholar 

  • Walker, J. (2012). QEEG-guided neurofeedback for remediation of dysgraphia. Biofeedback, 40, 113–114.

    Article  Google Scholar 

  • Wigton, N. L. (2008). 4-channel z-score neurofeedback—A single case study. Poster presentation at the 16th annual conference of the International Society for Neurofeedback and Research, San Antonio, TX.

  • Wigton, N. L. (2009). First impressions of Neuroguide real-time z-score training. In J. Demos (Ed.), Getting started with dynamic z-score training (pp. 81–89). Westminster, VT: Neurofeedback of S.VT.

    Google Scholar 

  • Wigton, N. L. (2010). Laplacian z-score neurofeedback: A unique option in the realm of multi-channel z-score neurofeedback. Plenary session oral presentation at 18th annual conference of the International Society for Neurofeedback and Research, Denver, CO.

  • Wigton, N. L. (2013). Clinical perspectives of 19-channel z-score neurofeedback: Benefits and limitations. Journal of Neurotherapy, 17(4), 259–264. doi:10.1080/10874208.2013.847142.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genomary Krigbaum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krigbaum, G., Wigton, N.L. A Methodology of Analysis for Monitoring Treatment Progression with 19-Channel Z-Score Neurofeedback (19ZNF) in a Single-Subject Design. Appl Psychophysiol Biofeedback 40, 139–149 (2015). https://doi.org/10.1007/s10484-015-9274-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10484-015-9274-0

Keywords

Navigation