Skip to main content
Log in

Global solution to a generalized nonisothermal Ginzburg-Landau system

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

The article deals with a nonlinear generalized Ginzburg-Landau (Allen-Cahn) system of PDEs accounting for nonisothermal phase transition phenomena which was recently derived by A. Miranville and G. Schimperna: Nonisothermal phase separation based on a microforce balance, Discrete Contin. Dyn. Syst., Ser. B, 5 (2005), 753–768. The existence of solutions to a related Neumann-Robin problem is established in an N ⩽ 3- dimensional space setting. A fixed point procedure guarantees the existence of solutions locally in time. Next, Sobolev embeddings, interpolation inequalities, Moser iterations estimates and results on renormalized solutions for a parabolic equation with L 1 data are used to handle a suitable a priori estimate which allows to extend our local solutions to the whole time interval. The uniqueness result is justified by proper contracting estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Adams: Sobolev Spaces. Academic Press, New York, 1975.

    MATH  Google Scholar 

  2. R.A. Adams, J. Fournier: Cone conditions and properties of Sobolev spaces. J. Math. Anal. Appl. 61 (1977), 713–734.

    Article  MATH  MathSciNet  Google Scholar 

  3. S. Agmon, A. Douglis, L. Nirenberg: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, II. Commun. Pure Appl. Math. 12 (1959), 623–727; 17 (1964), 35–92.

    Article  MATH  MathSciNet  Google Scholar 

  4. H.W. Alt, I. Pawlow: A mathematical model of dynamics of non-isothermal phase separation. Physica D 59 (1992), 389–416.

    Article  MATH  MathSciNet  Google Scholar 

  5. H. Attouch: Variational Convergence for Functions and Operators. Pitman, London, 1984.

    MATH  Google Scholar 

  6. C. Baiocchi: Sulle equazioni differenziali astratte lineari del primo e del secondo ordine negli spazi di Hilbert. Ann. Mat. Pura Appl. 76 (1967), 233–304. (In Italian.)

    Article  MATH  MathSciNet  Google Scholar 

  7. V. Barbu: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden, 1976.

    MATH  Google Scholar 

  8. D. Blanchard, G.A. Francfort: A few results on a class of degenerate parabolic equations. Ann. Sc. Norm. Sup. Pisa 18 (1991), 213–249.

    MATH  MathSciNet  Google Scholar 

  9. D. Blanchard, O. Guibé: Existence of a solution for a nonlinear system in thermoviscoelasticity. Adv. Differ. Equ. 5 (2000), 1221–1252.

    MATH  Google Scholar 

  10. D. Blanchard, H. Redwane: Renormalized solutions for a class of nonlinear evolution problems. J. Math. Pures Appl. 77 (1998), 117–151.

    MATH  MathSciNet  Google Scholar 

  11. G. Bonfanti, M. Frémond, F. Luterotti: Global solution to a nonlinear system for inversible phase changes. Adv. Math. Sci. Appl. 10 (2000), 1–24.

    MATH  MathSciNet  Google Scholar 

  12. G. Bonfanti, M. Frémond, F. Luterotti: Local solutions to the full model of phase transitions with dissipation. Adv. Math. Sci. Appl. 11 (2001), 791–810.

    MATH  MathSciNet  Google Scholar 

  13. G. Bonfanti, M. Frémond, F. Luterotti: Existence and uniqueness results to a phase transition model based on microscopic accelerations and movements. Nonlinear Anal., Real World Appl. 5 (2004), 123–140.

    Article  MATH  MathSciNet  Google Scholar 

  14. G. Bonfanti, F. Luterotti: Global solution to a phase transition model with microscopic movements and accelerations in one space dimension. Commun. Pure Appl. Anal. 5 (2006), 763–777.

    Article  MATH  MathSciNet  Google Scholar 

  15. H. Brézis: Analyse fonctionnelle. Théorie et applications. Masson, Paris, 1983. (In French.)

    MATH  Google Scholar 

  16. P. Colli: On some doubly nonlinear evolution equations in Banach spaces. Japan J. Ind. Appl. Math. 9 (1992), 181–203.

    Article  MATH  MathSciNet  Google Scholar 

  17. P. Colli, M. Frémond, O. Klein: Global existence of a solution to phase field model for supercooling. Nonlinear Anal., Real World Appl. 2 (2001), 523–539.

    Article  MATH  MathSciNet  Google Scholar 

  18. P. Colli, G. Gilardi, M. Grasselli: Well-posedness of the weak formulation for the phase-field model with memory. Adv. Differ. Equ. 2 (1997), 487–508.

    MATH  MathSciNet  Google Scholar 

  19. P. Colli, G. Gilardi, M. Grasselli, G. Schimperna: Global existence for the conserved phase field model with memory and quadratic nonlinearity. Port. Math. (N.S.) 58 (2001), 159–170.

    MATH  MathSciNet  Google Scholar 

  20. P. Colli, Ph. Laurençot: Existence and stabilization of solutions to the phase-field model with memory. J. Integral Equations Appl. 10 (1998), 169–194.

    Article  MATH  MathSciNet  Google Scholar 

  21. P. Colli, F. Luterotti, G. Schimperna, U. Stefanelli: Global existence for a class of generalized systems for irreversible phase changes. NoDEA, Nonlinear Differ. Equ. Appl. 9 (2002), 255–276.

    Article  MATH  MathSciNet  Google Scholar 

  22. A. Damlamian: Some results on the multi-phase Stefan problem. Commun. Partial Differ. Equations 2 (1977), 1017–1044.

    Article  MATH  MathSciNet  Google Scholar 

  23. A. Damlamian, N. Kenmochi: Evolution equations generated by subdifferentials in the dual space of H1(Ω). Discrete Contin. Dyn. Syst. 5 (1999), 269–278.

    Article  MATH  MathSciNet  Google Scholar 

  24. R. J. DiPerna, J.-L. Lions: On the Cauchy problem for Boltzmann equations: Global existence and weak stability. Ann. Math. 130 (1989), 321–366.

    Article  MathSciNet  Google Scholar 

  25. R. J. DiPerna, J.-L. Lions: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989), 511–547.

    Article  MATH  MathSciNet  Google Scholar 

  26. M. Frémond: Non-Smooth Thermomechanics. Springer, Berlin, 2002.

    MATH  Google Scholar 

  27. M. Gurtin: Generalized Ginzburg-Landau and Cahn-Hilliard equations based on microforce balance. Physica D 92 (1996), 178–192.

    Article  MATH  MathSciNet  Google Scholar 

  28. O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural’tseva: Linear and Quasi-linear Equations of Parabolic Type. Translation of Mathematical Monographs, 23. AMS, Providence, 1968.

    MATH  Google Scholar 

  29. Ph. Laurençot, G. Schimperna, U. Stefanelli: Global existence of a strong solution to the one-dimensional full model for irreversible phase transitions. J. Math. Anal. Appl. 271 (2002), 426–442.

    Article  MATH  MathSciNet  Google Scholar 

  30. J.-L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod/Gauthier-Villars, Paris, 1969. (In French.)

    MATH  Google Scholar 

  31. J.-L. Lions, E. Magenes: Problèmes aux limites non homogènes et applications. Dunod, Paris, 1968. (In French.)

    MATH  Google Scholar 

  32. F. Luterotti, U. Stefanelli: Existence result for the one-dimensional full model of phase transitions. Z. Anal. Anwend. 21 (2002), 335–350.

    MATH  MathSciNet  Google Scholar 

  33. F. Luterotti, G. Schimperna, U. Stefanelli: Existence result for a nonlinear model related to irreversible phase changes. Math. Models Methods Appl. Sci. 11 (2001), 808–825.

    Article  MathSciNet  Google Scholar 

  34. F. Luterotti, G. Schimperna, U. Stefanelli: Global solution to a phase field model with irreversible and constrained phase evolution. Q. Appl. Math. 60 (2002), 301–316.

    MATH  MathSciNet  Google Scholar 

  35. F. Luterotti, G. Schimperna, U. Stefanelli: Local solution to Frémond’s full model for irreversible phase transitions. In: Mathematical Models and Methods for Smart Materials. Proc. Conf., Cortona, Italy, June 25–29, 2001 (M. Fabrizio, B. Lazzari, A. Mauro, eds.). World Scientific, River Edge, 2002, pp. 323–328.

    Google Scholar 

  36. A. Miranville, G. Schimperna: Nonisothermal phase separation based on a microforce balance. Discrete Contin. Dyn. Syst., Ser. B 5 (2005), 753–768.

    Article  MATH  MathSciNet  Google Scholar 

  37. A. Miranville, G. Schimperna: Global solution to a phase transition model based on a microforce balance. J. Evol. Equ. 5 (2005), 253–276.

    Article  MATH  MathSciNet  Google Scholar 

  38. L. Nirenberg: On elliptic partial differential equations. Ann. Sc. Norm. Sup. Pisa, III. Ser. 123 (1959), 115–162.

    MATH  MathSciNet  Google Scholar 

  39. J.E. Rakotoson, J.M. Rakotoson: Analyse fonctionnelle appliquée aux équations aux dérivées partielles. Presse Universitaires de France, 1999. (In French.)

  40. J. Simon: Compact sets in the space Lp(0, T; B). Ann. Mat. Pura Appl., IV. Ser. 146 (1978), 65–96.

    Article  Google Scholar 

  41. R. Temam: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York, 1988.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nesrine Fterich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fterich, N. Global solution to a generalized nonisothermal Ginzburg-Landau system. Appl Math 55, 1–46 (2010). https://doi.org/10.1007/s10492-010-0001-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-010-0001-0

Keywords

MSC 2010

Navigation