Skip to main content
Log in

The influence of cadmium on life-history parameters and gut microflora of Archegozetes longisetosus (Acari: Oribatida) under laboratory conditions

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

We tested the effect of cadmium (25, 130 μg Cd g−1), administered via Chinese cabbage (Brassica chinensis L.) as food on life-history parameters and gut microflora of tritonymphs and adults of the oribatid mite, Archegozetes longisetosus Aoki. Both concentrations of Cd had an adverse effect on offspring mortality, and the higher concentration also reduced female fecundity, as well as the number of bacteria, fungi and actinomycetes, and it changed the community structure of bacteria; the proportion of gram-negative bacteria increased while that of gram-positive bacteria declined. Interestingly, at the lower Cd concentration microflora was more abundant and diverse than in the control group, especially in the tritonymphs, although the mean activity of gut microflora was reduced. The higher Cd concentration reduced microflora activity both in the tritonymphs and adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Babich H, Stotzky G (1977) Sensitivity of various bacteria, including actinomycetes, and fungi to cadmium and the influence of pH on sensitivity. Appl Environ Microbiol 33:681–695

    PubMed  CAS  Google Scholar 

  • Barkay T, Tripp SC, Olson BH (1985) Effect of metal-rich sewage sludge application on the bacterial communities of grasslands. Appl Environ Microbiol 49:333–337

    PubMed  Google Scholar 

  • Behan-Pelletier VM (1999) Oribatid mite biodiversity in agroecosystems: role for bioindication. Agr Ecosyst Environ 74:411–423

    Article  Google Scholar 

  • Berthet P (1963) Mesure de la consummation d’oxygene des Oribates (Acariens) de la litiere des forêts. In: Doeksen J, van der Drift J (eds) Soil organisms. North-Holland, Amsterdam, pp 18–31

    Google Scholar 

  • Boguszewska J (1980) Isolation and some properties of extracellular amylases of Fusarium martii. Acta Mycol 16:237–245 in polish

    CAS  Google Scholar 

  • Cavalli V (1946) Sull’attivita antibatterica del cloruro di cadmio. Atti Accad Fisiocrit Siena Sez Med Fis 14:578–588

    CAS  Google Scholar 

  • Denneman CAJ, Van Straalen NM (1991) The toxicity of lead and copper in reproduction tests using the oribatid mite Platynothrus peltifer. Pedobiologia 35:305–311

    CAS  Google Scholar 

  • Djukic D, Mandic L (2006) Microorganisms as indicators of soil pollution with heavy metals. Acta Agriculturae Serbica 11:45–55

    Google Scholar 

  • Drobne D, Rupnik M, Lapanje A, Strus J, Janc M (2002) Isopod gut microflora parameters as endpoints in toxicity studies. Environ Toxicol Chem 21:604–609

    Article  PubMed  CAS  Google Scholar 

  • Filzek PDB, Spurgeon DJ, Broll G, Svendsen C, Hankard PK, Kammenga JE, Donker MH, Weeks JM (2004a) Pedological characterisation of sites along a transect from a primary Cadmium/Lead/Zinc Smelting Works. Ecotoxicology 13:725–737

    Article  PubMed  CAS  Google Scholar 

  • Filzek PDB, Spurgeon DJ, Broll G, Svendsen C, Hankard PK, Parekh N, Stubberud HE, Weeks JM (2004b) Metal effects on soil invertebrate feeding: measurements using the Bait Lamina method. Ecotoxicology 13:807–816

    Article  PubMed  Google Scholar 

  • Frostegard A, Tunlid A, Baath E (1993) Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59:3605–3617

    PubMed  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    Article  CAS  Google Scholar 

  • Hankin L, Zucker M, Sands DC (1971) Improved solid medium for the detection and enumeration of pectolytic bacteria. Appl Microbiol 22:205–209

    PubMed  CAS  Google Scholar 

  • Haq MA (1982) Feeding habits of ten species of oribatid mites (Acari: Oribatei) from Malbar, South India. Indian J Acarol 6:39–50

    Google Scholar 

  • Haq MA (1996) Nutritional diversity of oribatid mites in relation to soil fertility. J Karnatak Univ Sci 40 (Special Issue):76–96

    Google Scholar 

  • Haq MA, Prabhoo NR (1977) Observations on the feeding habits of oribatid mites from the soils of Kerala (Acarina: Cryptostigmata)—pahphytophages. Entomon 1:133–137

    Google Scholar 

  • Heethoff M, Laumann M, Bergmann P (2007) Adding to the reproductive biology of the parthenogenetic oribatid mite Archegozetes longisetosus (Acari, Oribatida, Trhypochthoniidae). Turk J Zool 31:151–159

    Google Scholar 

  • Hutton M (1984) Impact of airborne metal contamination on a deciduous woodland system. In: Sheehan PJ, Miller DR, Butler GC (eds) Effects of pollutants at the ecosystem level. Wiley, New York

    Google Scholar 

  • Kado CI, Hesket MG (1970) Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas and Xanthomonas. Phytopathology 60:969–976

    Article  PubMed  CAS  Google Scholar 

  • Kobierski M (2004) Copper, zinc, manganese and iron concentrations in soils of 27 and 30-year-old apple tree orchards. Acta Sci Pol Hortorum Cultus 3:161–170

    Google Scholar 

  • Lapanje A, Rupnik M, Drobne D (2007) Gut bacterial community structure (Porcellio scaber, Isopoda, Crustacea) as a measure of community level response to long-term and short-term metal pollution. Environ Toxicol Chem 26:755–763

    Article  PubMed  CAS  Google Scholar 

  • Lavelle P (1997) Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Adv Ecol Res 27:93–132

    Article  Google Scholar 

  • Ludwig M, Kratzmann M, Alberti G (1991) Accumulation of heavy metals in two oribatid mites. In: Dusbábek F, Bukva V (eds) Modern Acarology, vol 1. Academia, Prague and SPB Academic Publishing bv, The Hague, pp 431–437

    Google Scholar 

  • Ludwig M, Kratzmann M, Alberti G (1993) The influence of some heavy metals on Steganacarus magnus (Acari, Oribatida). Z Angew Zool 4:455–467

    Google Scholar 

  • Norton RA, Palmer SC (1991) The distribution, mechanisms and evolutionary significance of parthenogenesis in oribatid mites. In: Schuster R, Murphy PW (eds) The Acari—Reproduction, development and life-history strategies. Chapman and Hall, London, pp 107–136

    Google Scholar 

  • Palmer SC, Norton RA (1990) Further experimental proof of thelytokous parthenogenesis in oribatid mites (Acari: Oribatida: Desmonomata). Exp Appl Acarol 8:149–159

    Article  Google Scholar 

  • Palmer SC, Norton RA (1992) Genetic diversity in thelytokous oribatid mites (Acari: Acariformes: Desmonomata). Biochem Ecol Syst 20:219–231

    Article  Google Scholar 

  • Rajapaksha RMCP, Tobor-Kapłon MA, Baath E (2004) Metal toxicity affects fungal and bacterial activities in soil differently. Appl Environ Microb 70:2966–2973

    Article  CAS  Google Scholar 

  • Romandini P, Tallandini L, Beltramini M, Salvato B, Manzano M (1992) Effects of copper and cadmium on growth, superoxide dismutase and catalase activities in different yeast strains. Comp Biochem Physiol 103C:255–262

    CAS  Google Scholar 

  • Schatz H, Behan-Pelletier VM (2008) Global diversity of oribatids (Oribatida: Acari: Arachnida). Hydrobiologia 595:323–328

    Article  Google Scholar 

  • Seniczak A (2006) The influence of heavy metals on the soil mites. In: Gabryś G, Ignatowicz S (eds) Postępy Polskiej Akarologii. Wydawnictwo SGGW, Warszawa, pp 293–303

    Google Scholar 

  • Seniczak A (2007) Preliminary studies on the toxicity of copper and lead in Pergalumna nervosa (Berlese, 1914) (Acari, Oribatida) in laboratory tests. In: Tajovský K, Schlaghamerský J, Pižl V (eds) Contributions to soil zoology in Central Europe. II. České Budějovice, Czech Republic, pp 131–134

    Google Scholar 

  • Seniczak A, Seniczak S (2002) The effect of cadmium on Archegozetes longisetosus (Acari, Oribatida) in laboratory conditions. Eur J Soil Biol 38:315–317

    Article  CAS  Google Scholar 

  • Seniczak S, Seniczak A (2008) Oribatid mites (Acari, Oribatida) as bioindicators of forest habitats. In: Gwiazdowicz D (ed) Selected problems of acarological research in forests. Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu, Poznań, pp 41–58

    Google Scholar 

  • Seniczak S, Stefaniak O (1978) The microflora of the effect of the alimentary canal of Oppia nitens (Acarina, Oribatei). Pedobiologia 18:110–119

    Google Scholar 

  • Seniczak S, Klimek A, Gackowski G, Kaczmarek S, Zalewski G (1997) Effect of copper smelting air pollution on the mites (Acari) associated with young Scots Pine forests polluted by a copper smelting works at Głogów, Poland. II. Soil mites. Water Air Soil Poll 97:287–302

    CAS  Google Scholar 

  • Seniczak A, Ignatowicz S, Seniczak S (2000) Effect of some heavy metals on the bionomy of mite Archegozetes longisetosus (Acari, Oribatida) in the laboratory conditions. Ecol Chem Eng 10:1085–1091

    Google Scholar 

  • Siepel H (1994) Structure and function of soil microarthropod communities. Dissertation, Wageningen, 136 pp

  • Simkiss K, Watkins B (1991) Differences in zinc uptake between snails (Helix aspersa (Muller)) from metal and bacteria-polluted sites. Funct Ecol 5:787–794

    Article  Google Scholar 

  • Smrž J (2000) A modified test for chitinase and cellulase activity in soil mites. Pedobiologia 44:186–189

    Article  Google Scholar 

  • Smrž J, Norton RA (2004) Food selection and internal processing in Archegozetes longisetosus (Acari, Oribatida). Pedobiologia 48:111–120

    Article  Google Scholar 

  • Sobczak E, Duszkiewicz W, Grzybowski R (1978) Theory and laboratory on general and technical microbiology (In Polish). Skrypt SGGW-AR w Warszawie

  • Stebbing ARD (1982) Hormesis—the stimulation of growth by low levels of inhibitors. Sci Total Environ 22:213–234

    Article  PubMed  CAS  Google Scholar 

  • Stefaniak O, Seniczak S (1976) The microflora of the alimentary canal of Achipteria coleoptrata (Acarina, Oribatei). Pedobiologia 16:185–194

    Google Scholar 

  • Stefaniak O, Seniczak S (1981) The effect of fungal diet on the development of Oppia nitens (Acari, Oribatei) and on the microflora of its alimentary tract. Pedobiologia 21:202–210

    Google Scholar 

  • Stefaniak O, Seniczak S (1983) Intestinal microflora in representatives of different feeding groups of soil moss mites (Acarida, Oribatida). In: Lebrun Ph, André HM, De Medts A, Gregoire-Wibo C, Wauthy G (eds) New trends in soil biology. Dieu-Brichart, Ottignies, Louvain-la-Neuve, Belgium, pp 622–624

    Google Scholar 

  • Strojan CL (1978) The impact of zinc smelter emission on forest litter arthropods. Oikos 31:41–46

    Article  Google Scholar 

  • Strzelczyk E, Szpotański T (1989) Cellulolytic and pectinolytic activity of streptomyces isolated from root-free soil, rhizosphere and mycorrhizosphere of pine (Pinus sylvestris L.). Biol Fertil Soils 9:269–272

    Google Scholar 

  • Tyler G, Balsberg-Påhlsson AM, Bengtsson G, Bååth E, Tranvik L (1989) Heavy-metal ecology of terrestrial plants, microorganisms and invertebrates. A review. Water Air Soil Poll 47:189–215

    Article  CAS  Google Scholar 

  • Van Straalen NM, Schobben JH, De Goede RM (1989) Population consequences of cadmium toxicity in soil microarthropods. Ecotox Environ Safe 17:190–204

    Article  Google Scholar 

  • Walter DE, Proctor HC (1999) Mites. Ecology, evolution and behaviour. University of New South Wales Press, Sydney

    Google Scholar 

  • Wolf MM, Rockett CL (1984) Habitat changes affecting bacterial composition in the alimentary canal of oribatid mites (Acari: Oribatida). Int J Acarol 10:209–215

    Article  Google Scholar 

  • Woodring JP, Cook EF (1962) The biology of Ceratozetes cisalpinus Berlese, Scheloribates laevigatus Koch and Oppia neerlandica Oudemans (Oribatei) with a description of all stages. Acarologia 4:101–137

    Google Scholar 

Download references

Acknowledgments

We are very grateful to Prof. R. A. Norton (SUNY College of Environmental Science and Forestry in Syracuse, NY, USA) for his thorough revision of this manuscript and many valuable suggestions and comments that highly improved this manuscript, and for the language corrections. We thank Dr. M. Kobierski (Department of Soil Science, University of Technology and Life Sciences in Bydgoszcz) for preparing contaminated food and determination of its Cd content. We express our sincere gratitude to both anonymous reviewers and the editor for their helpful suggestions and improvements of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Seniczak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seniczak, A., Ligocka, A., Seniczak, S. et al. The influence of cadmium on life-history parameters and gut microflora of Archegozetes longisetosus (Acari: Oribatida) under laboratory conditions. Exp Appl Acarol 47, 191–200 (2009). https://doi.org/10.1007/s10493-008-9210-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-008-9210-6

Keywords

Navigation