Skip to main content
Log in

New Answers on the Interaction Between Polymers and Vortices in Turbulent Flows

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Numerical data of polymer drag reduced flows is interpreted in terms of modification of near-wall coherent structures. The originality of the method is based on numerical experiments in which boundary conditions or the governing equations are modified in a controlled manner to isolate certain features of the interaction between polymers and turbulence. As a result, polymers are shown to reduce drag by damping near-wall vortices and sustain turbulence by injecting energy onto the streamwise velocity component in the very near-wall region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonia, R.A. and Luxton, R.E., The response of a turbulent boundary layer to a step change in surface roughness. Part 1. Smooth to rough J. Fluid Mech. 48 (1971) 721–761.

    Article  ADS  Google Scholar 

  2. Antonia, R.A., Kim, J. and Browne, L.W.B., Some characteristics of small-scale turbulence in a turbulent duct flow. J. Fluid Mech. 233 (1981) 369–388.

    Article  ADS  Google Scholar 

  3. Antonia, R.A., The effect of different types of surface conditions on a turbulent boundary layer. First International Conference of Flow Interaction, Hong-Kong (1994).

  4. Antonia, R.A., Antonia, R.A., Zhu, Y. and Sokolov, M., Effect of concentrated wall suction on a turbulent boundary layer. Phys. Fluids 7(10) (1995) 2465–2474.

    Article  ADS  Google Scholar 

  5. Batchelor, G.K., Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5 (1959) 113–133.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Batchelor, G.K., Howells, I.D. and Townsend, A.A., Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. The case of large conductivity. J. Fluid Mech. 5 (1959) 134–139.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. De Angelis, E., Casciola, C.M. and Piva, R., DNS of wall turbulence: Dilute polymers and self-sustaining mechanisms. Comp. Fluids 31 (2002) 495–507.

    Article  MATH  Google Scholar 

  8. Dimitropoulos, C.D., Sureshkumar, R., Beris, A.N. and Handler, R.A., Budget if Reynolds stress, kinetic energy and streamwise enstrohpy in viscoelastic turbulent channel flow. Phys. Fluids 13(4) (2001) 1016–1027.

    Article  ADS  Google Scholar 

  9. Bushnell, D.M. and Moore, K.J., Drag reduction in nature. Ann. Rev. Fluid Mech. 23 (1991) 65–79.

    Article  ADS  Google Scholar 

  10. Djenidi, L., Elavarasan, R. and Antonia, R.A., The turbulent boundary layer over transverse square cavities. J. Fluid Mech. 395 (1999) 271–294.

    Article  MATH  ADS  Google Scholar 

  11. Dubief, Y. and Lele, S.K., Direct numerical simulation of polymer flow. Ann. Res. Briefs, Center for Turbulence Research, 2001, 197–208.

  12. Dubief, Y., White, C.M., Terrapon, V.E., Shaqfeh, E.S.G., Moin, P. and Lele, S.K.,On the coherent drag-reducing and turbulence-enhancing behavior of polymers in wall flows. J. Fluid Mech. 514 (2004) 271–280.

    Article  MATH  ADS  Google Scholar 

  13. Hamilton, J.M., Kim, J. and Waleffe, F., Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287 (1995) 317–348.

    Article  MATH  ADS  Google Scholar 

  14. Herrchen, M. and Öttinger, H.C., A detailed comparison of various FENE dumbbell models. J. Non-Newtonian Fluid Mech. 68 (1997) 17–42.

    Article  Google Scholar 

  15. Jiménez, J. and Moin, P., The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225 (1991) 213–240.

    Article  ADS  Google Scholar 

  16. Jiménez, J. and Pinelli, A., The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389 (1999) 335–359.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Kim, J. and Moin, P., Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comp. Phys. 59 (1985) 308–323.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Kim, J., Control of turbulent boundary layers. Phys. Fluids 15(5) (2003) 1093–1105.

    Article  ADS  MathSciNet  Google Scholar 

  19. Lele, S.K., Compact finite difference schemes with spectral-like resolution. J. Comp. Phys. 103 (1992) 16–42.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Lumley, J.L., Drag reduction by additives. Ann. Rev. Fluid Mech. 1 (1969) 367–384.

    Article  ADS  Google Scholar 

  21. Lumley, J.L. and Newman, G.R., The return to isotropy of homogeneous turbulence. J. Fluid Mech. 82 (1977) 161–178.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Massah, H. and Hanratty, T.J., Added stresses because of the presence of FENE-P bead-spring chains in a random velocity field. J. Fluid Mech. 337 (1997) 67–101.

    Article  MATH  ADS  Google Scholar 

  23. Min, T., Yoo, J.Y. and Choi, H., Effect of spatial discretization schemes on numerical solutions of viscoelastic fluid flows. J. Non-Newtonian Fluid Mech. 100 (2001) 27–47.

    Article  MATH  Google Scholar 

  24. Ptasinski, P.K., Nieuwstadt, F.T.M., Van den Brule, B.H.A.A. and Hulsen, M.A., Experiments in turbulent pipe flow with polymer additives at maximum drag reduction. Flow Turbulence and Combustion 66(2) (2001) 159–182.

    Article  MATH  Google Scholar 

  25. Sibilla, S. and Baron, A., Polymer stress statistics in the near-wall turbulent flow of a drag-reducing solution. Phys. Fluids 14(3) (2002) 1123–1136.

    Article  ADS  Google Scholar 

  26. Sreenivasan, K.R. and White, C.M., The onset of drag reduction by dilute polymer additives and the maximum drag reduction asymptote. J. Fluid Mech. 409 (2000) 149–164.

    Article  MATH  ADS  Google Scholar 

  27. Stone, P.A., Waleffe, F. and Graham, M.D., Toward a structural understanding of turbulent drag reduction: nonlinear coherent states in viscoelastic flows. Phys. Rev. Lett. 89(20) (2002) 208301.

    Article  Google Scholar 

  28. Sureshkumar, R., Beris, A.N. and Handler, R.A., Direct numerical simulations of turbulent channel flow of a polymer solution. Phys. Fluids 9(3) (1997) 743–755.

    Article  ADS  Google Scholar 

  29. Tabor, M. and De Gennes, P.G., A cascade theory of drag reduction. Europhys. Lett. 2 (1986) 519–522.

    Article  ADS  Google Scholar 

  30. Terrapon, V.E., Dubief, Y., Moin, P. and Shaqfeh, E.S.G., Brownian dynamics simulation in a turbulent channel flow. ASME Conference, 2003 Joint ASME/JSME Fluids Engineeing Symposium on Friction Drag Reduction, Honolulu, Hawaii, USA, 2003.

  31. Terrapon, V.E., Dubief, Y., Moin, P., Shaqfeh, E.S.G. and Lele, S.K., Simulated polymer stretch in a turbulent flow using Brownian dynamics. J. Fluid Mech., 504 (2004) 61–71.

    Article  MATH  ADS  Google Scholar 

  32. Virk, P.S. and Mickley, H.S., The ultimate asymptote and mean flow structures in Tom's phenomenon. Trans. ASME E: J. Appl. Mech. 37 (1970) 488–493.

    Google Scholar 

  33. Virk, P.S., Drag reduction fundamentals. AIChE J. 21 (1975) 625–656.

    Article  Google Scholar 

  34. Warholic, M.D., Massah, H. and Hanratty, T.J., Influence of drag-reducing polymers on turbulence: Effects of Reynolds number, concentration and mixing. Exp. Fluids 27 (1999) 461–472.

    Article  Google Scholar 

  35. White, C.M., Somandepalli, V.S.R. and Mungal, M.G., The turbulence structure of drag reduced boundary layer flow. Exp. Fluids, To appear (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Dubief.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubief, Y., Terrapon, V.E., White, C.M. et al. New Answers on the Interaction Between Polymers and Vortices in Turbulent Flows. Flow Turbulence Combust 74, 311–329 (2005). https://doi.org/10.1007/s10494-005-9002-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-005-9002-6

Keywords

Navigation