Skip to main content
Log in

LES and RANS for Turbulent Flow over Arrays of Wall-Mounted Obstacles

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Large-eddy simulation (LES) has been applied to calculate the turbulent flow over staggered wall-mounted cubes and staggered random arrays of obstacles with area density 25%, at Reynolds numbers between 5 × 103 and 5 106, based on the free stream velocity and the obstacle height. Re = 5 × 103 data were intensively validated against direct numerical simulation (DNS) results at the same Re and experimental data obtained in a boundary layer developing over an identical roughness and at a rather higher Re. The results collectively confirm that Reynolds number dependency is very weak, principally because the surface drag is predominantly form drag and the turbulence production process is at scales comparable to the roughness element sizes. LES is thus able to simulate turbulent flow over the urban-like obstacles at high Re with grids that would be far too coarse for adequate computation of corresponding smooth-wall flows. Comparison between LES and steady Reynolds-averaged Navier-Stokes (RANS) results are included, emphasising that the latter are inadequate, especially within the canopy region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Addad, Y., Laurence, D., Talotte, C., Jacob, M.C.: Large eddy simulation of a forward-backward facing step for acoustic source identification (2003)

  2. Andren, A., Brown, A., Mason, P.J., Graf, J., Schumann, U., Moeng, C.-H., Nieuwstadt, F.T.M.: A neutrally stratified boundary-layer: a comparison of four large-eddy simulation computer codes. Direct and Large-Eddy Simulation I: Selected Paper from the First ERCOFTAC Workshop on Direct and Large-Eddy Simulation. Voke, P.R., Kleiser, L., Chollet, J.-P. (ed), Kluwer Academic Publishers (1994)

  3. Apsley, D.: Numerical modelling of neutrally and stably stratified flow and dispersion in complex terrain. PhD thesis. University of Surrey, UK (1995)

  4. Britter, R.E., Hanna, S.R.: Flow and dispersion in urban areas. Annu. Rev. Fluid Mech. 35, 469–496 (2003)

    Article  ADS  Google Scholar 

  5. Castro, I.P., Cowan, I.R., Robins, A.G.: Simulation of flow and dispersion around buildings. J. Aero. Eng. 145–160 Oct. (1999)

  6. Castro, I.P.: CFD for external aerodynamics in the built environment. The QNET-CFD network Newsletter 2(2), 229–259 (2003)

    Google Scholar 

  7. Castro, I.P., Cheng, H., Reynolds, R.: Turbulence over urban-type rough-ness:decutions from with tunnel measurements. Bound.-layer Meteoro. 118, 109–131 (2005)

    Article  ADS  Google Scholar 

  8. Chang, Y.S., Scotti, A.: Modeling unsteady turbulent flows over ripples: Reynolds-averaged Navier-Stokes equation (RANS) versus large-eddy simulation (LES). J. Geohys. Res. 109 (2004)

  9. Cheng, H., Castro, I.P.: Near wall flow over urban-like roughness. Boundary-Layer Meteorol. 104, 229–259 (2002a)

    Article  ADS  Google Scholar 

  10. Cheng, Y., Lien, F.S., Yee, E., Sinclair, R.: A comarison of large eddy simulation with a standard k - € Reynolds-averaged Navier-Stokes model for the prediction of a fully developed turbulent flow over a matrix of cubes. J. Wind Eng. Indus. Aerodyn. 91, 1301–1328 (2003)

    Article  Google Scholar 

  11. Coceal, O., Thomas, T.G., Castro, I.P., Belcher, S.E.: Mean flow and turbulence statistics over groups of urban-like cubical obstacles. Boundary Layer Meteorol. In Press (2006)

  12. Daly, B.J., Harlow, F. H.: Transport Equations in Turbulence. Phys. Fluids 13, 2634–2649 (1970)

    Article  ADS  Google Scholar 

  13. Dong. Y.H., Lu, X.Y.: Large eddy simulation of a thermally stratified turbulent channel flow with temperature oscillation on the wall. Int. J. Heat Mass Transfer 47, 2109–2122 (2004)

    Article  Google Scholar 

  14. Dittrich, A., Nestmann, F., Ergenzinger, P.: Ratio of lift and shear forces over rough surfaces. In: Ashworth, P.J., et al. (ed.), coherent flow structures in open channels. Wiley, New York (1996)

    Google Scholar 

  15. Fackrell, J.E., Robins, A.G.: Concentration fluctuations and fluxes in plumes from point sources in a turbulent boundary layer. J. Fluid Mech. 117, 1–26 (1982)

    Article  ADS  Google Scholar 

  16. Finnigan, J.: Turbulence in plant canopy. Annu. Rev. Fluid Mech. 32, 519–571 (2000)

    Article  ADS  Google Scholar 

  17. Gibson, M.M., Launder, B.E.: Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer. J. Fluid Mech. 86, 491–511 (1978)

    Article  MATH  ADS  Google Scholar 

  18. Hanna, S.R., Tehranian, S., Carissimo, B., Macdonald, R.W., Lohner R.: Comparisons of model simulations with observations of mean flow and turbulence within simple obstacle arrays. Atmos. Environ. 36, 5067–5079 (2002)

    Article  Google Scholar 

  19. Hoxey, R.P., Reynolds, A.M., Richardson, G.M., Robertson, A.P., Short, J.L.: Observations of Reynolds number sensitivity in the separated flow region on a bluff body. J. Wind Eng. Ind. Aerodyn. 73, 231–249 (1998)

    Article  Google Scholar 

  20. Kanda, M., Moriwaki, R., Kasamatsu, F.: Large-eddy simulation of turbulent organized structures within and above explicitly resolved cube arrays. Boundary-Layer Meteorol. 112, 343–368 (2004)

    Article  ADS  Google Scholar 

  21. Kim, S.-E., Choudhury, D.: A Near-Wall Treatment Using Wall Functions Sensitized to Pressure Gradient. ASME FED Vol. 217. Separated and Complex Flows (1995)

  22. Leschziner, M.A., Rodi, W.: Calculation of annular and twin jets using various discretisation schemes and turbulence model variations. J. Fluids Engrg. 103, 352–360 (1981)

    Article  Google Scholar 

  23. Mason, P.J.: Large-eddy simulation of the convective boundary layer. J. Atmos. Sci. 46, 1492–1516 (1989)

    Article  ADS  Google Scholar 

  24. Meinders, E.R., Hanjalic, K.: Vortex structure and heat transfer in turbulent flow over a wall-mounted matrix of cubes. Int. J. Heat Fluid Flow 20, 255–267 (1999)

    Article  Google Scholar 

  25. Moeng, C.-H.: A large-eddy simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci. 41, 2052–2062 (1984)

    Article  ADS  Google Scholar 

  26. Nieuwstadt, F.T.M., Brost, R.A.: The decay of convective turbulence. J. Atmos. Sci. 43, 532–546 (1986)

    Article  ADS  Google Scholar 

  27. Shah, K.B.: Large eddy simulations of flow past a cubic obstacle. Dissertation. Stanford University (1998)

  28. Schmidt, H., Schumann, U.: Coherent structure of the convective boundary layer derived from large-eddy simulation. J. Fluid Mech. 200, 511–562 (1989)

    Article  MATH  ADS  Google Scholar 

  29. Stoesser, T., Mathey, F., Frohlich, J., Rodi, W.: LES of flow over multiple cubes. ERCOFTAC Bulletin No. 56 (2003)

  30. Sagaut, P.: Large Eddy Simulation for Incompressible Flows. Springer-Verlag (2001)

  31. Stull, R.B.: An Introduction to Boundary Layer Meteorology. Kluwer Academic, The Netherlands, p. 366 (1993)

    Google Scholar 

  32. Werner, H., Wengle, H.: Large-eddy simulation of turbulent flow over and around a cube in a plate channel. In: 8th Symposium on Turbulent Shear Flows, Munich, Germany (1991)

  33. Williams, G.P.: Numerical investigation of the three-dimensional Navier-Stokes eqnarrays for incompressible flow. J. Fluid Mech. 37, 727–750 (1969)

    Article  MATH  ADS  Google Scholar 

  34. Xie, Z., Voke, P.R., Hayden, P., Robins, G.A.: Large-eddy simulation of turbulent flow over a rough surface. Boundary-Layer Meteorol. 111, 417–440 (2004a)

    Article  ADS  Google Scholar 

  35. Xie, Z., Hayden, P., Voke, P.R., Robins, A.G.: Large-eddy simulation of dispersion: comparison between elevated source and ground level source. J. Turbulence 5(31), 1–16 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian P. Castro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Z., Castro, I.P. LES and RANS for Turbulent Flow over Arrays of Wall-Mounted Obstacles. Flow Turbulence Combust 76, 291–312 (2006). https://doi.org/10.1007/s10494-006-9018-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-006-9018-6

Keywords

Navigation