Skip to main content
Log in

Large Eddy Simulation of Spark Ignition in a Gas Turbine Combustor

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Ignition in an aircraft gas turbine combustion chamber is simulated using Large Eddy Simulation (LES) in conjunction with the filtered probability density function (pdf) equation approach, which is solved using the Eulerian stochastic field method. The LES-pdf methodology is used for both dispersed (liquid) and gas phases. The liquid phase is described using a Lagrangian formulation whilst an Eulerian approach is employed for the gas phase. The spark energy deposition was mimicked by a distributed energy source term added to the enthalpy equation. Unsuccessful and successful ignition sequences have been simulated and the results suggest that spark ‘size’ is an important parameter in the ignition of kerosene fuelled combustion chambers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed, S., Balachandran, R., Marchione, T., Mastorakos, E.: Spark ignition of turbulent nonpremixed bluff-body flames. Combust. Flame 151, 366–385 (2007)

    Article  Google Scholar 

  2. Ahmed, S.F., Mastorakos, E.: Spark ignition of lifted turbulent jet flames. Combust. Flame 146, 215–231 (2006)

    Article  Google Scholar 

  3. Apte, S.V., Mahesh, K., Gorokhovski, M., Moin, P.: Stochastic modeling of atomizing spray in a complex injector using Large Eddy Simulations. Proc. Combust. Inst. 32, 2257–2266 (2009)

    Article  Google Scholar 

  4. Apte, S.V., Mahesh, K., Moin, P.: Large Eddy Simulations of evaporating spray in a coaxial combustor. Proc. Combust. Inst. 32, 2247–2256 (2009)

    Article  Google Scholar 

  5. Bini, M., Jones, W.P.: Particle acceleration in turbulent flows: a class of nonlinear stochastic models for intermittency. Phys. Fluids 19, 035104 (2007)

    Article  Google Scholar 

  6. Bini, M., Jones, W.P.: Large Eddy Simulation of particle laden turbulent flows. J. Fluid Mech. 614, 207–252 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bini, M., Jones, W.P.: Large Eddy Simulation of an evaporating acetone spray. Int. J. Heat Fluid Flow 30, 471–480 (2009)

    Article  Google Scholar 

  8. Birouk, M., Gokalp, I.: Current status of droplet evaporation in turbulent flows. Pror. Energy Combust. Sci. 32, 408–423 (2006)

    Article  Google Scholar 

  9. Boileau, M., Pascaud, S., Riber, E., Cuenot, B., Gicquel, L.Y.M., Poinsot, T.J., Cazalens, M.: Investigation of two-fluid methods for Large Eddy Simulation of spray combustion in gas turbines. Flow Turbul. Combust. 80, 291–321 (2008)

    Article  Google Scholar 

  10. Boileau, M., Staffelbach, G., Cuenot, B., Poinsot, T., Berat, C.: Les of an ignition sequence in a gas turbine engine. Combust. Flame 154, 2–22 (2008)

    Article  Google Scholar 

  11. Branley, N., Jones, W.P.: Large eddy simulation of a turbulent non-premixed flame. Combust. Flame 127, 1914–1934 (2001)

    Article  Google Scholar 

  12. Colucci, P., Jaberi, F., Givi, P., Pope, S.: Filtered density function for Large Eddy Simulation of turbulent reacting flows. Phys. Fluids 10, 499–515 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dopazo, C.: Probability density function approach for an axisymmetric heated jet: centerline evolution. Phys. Fluids 18, 397 (1975)

    Article  MATH  Google Scholar 

  14. Dopazo, C.: Relaxation of initial probability density function in turbulent convection of scalar fields. Phys. Fluids 22(1), 20–30 (1979)

    Article  MATH  Google Scholar 

  15. Dopazo, C., O’Brien, E.: Functional formulation of nonisothermal turbulent reactive flows. Phys. Fluids 17, 1968 (1974)

    Article  MATH  Google Scholar 

  16. Drew, D.A., Lahey, R.T.: Analytical modeling of multiphase flow. In: Roco, M.C. (ed.) Particulate Two Phase Flow (1993)

  17. Faeth, G.: Evaporation and combustion of sprays. Pror. Energy Combust. Sci. 9, 1–76 (1983)

    Article  Google Scholar 

  18. Fox, R.O.: Computational Models for Turbulent Reacting Flows. Cambridge University Press (2003)

  19. Gao, F., O’Brien, E.: A Large Eddy Simulation scheme for turbulent reacting flows. Phys. Fluids A 5, 1282–1284 (1993)

    Article  MATH  Google Scholar 

  20. Gardiner, C.W.: Handbook of Stochastic Methods. For Physics, Chemistry and the Natural Science. Springer (2002)

  21. Germano, M.: Differential filters for the Large Eddy Simulation of turbulent flows. Phys. Fluids 29, 1755–1757 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  22. Germano, M.: Turbulence: the filtering approach. J. Fluid Mech. 238, 325–336 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  23. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid scale eddy viscosity model. Phys. Fluids 23, 1760–1765 (1991)

    Google Scholar 

  24. Gicquel, L., Staffelbach, G., Cuenot, B., Poinsot, T.: Large Eddy Simulations of turbulent reacting flows in real burners: the status and challenges. J. Phys. 125, 12–29 (2008)

    Google Scholar 

  25. INTELLECT D.M.: http://www.intellect-dm.org. EU Project AST3-CT-2003-502961 (2004–2007)

  26. Jaberi, F.A., Colucci, P.J., James, S., Givi, P., Pope, S.B.: Filtered mass density function for Large-Eddy Simulation of turbulent reacting flows. J. Fluid Mech. 401, 85–121 (1999)

    Article  MATH  Google Scholar 

  27. Jones, W.P., Kahki, M.: Pdf modelling of finite-rate chemistry effects in turbulent non-premixed jet flames. Combust. Flame 115, 210–229 (1998)

    Article  Google Scholar 

  28. Jones, W.P., Lindstedt, R.P.: Global reaction schemes for hydrocarbon combustion. Combust. Flame 73, 233–249 (1988)

    Article  Google Scholar 

  29. Jones, W.P., Navarro-Martinez, S.: Large Eddy Simulation of auto-ignition with a sub-grid probability density function. Combust. Flame 150, 170–187 (2007)

    Article  Google Scholar 

  30. Jones, W.P., Navarro-Martinez, S.: Study of hydrogen auto-ignition in a turbulent air co-flow using a Large Eddy Simulation approach. Comput. Fluids 37, 802–808 (2008)

    Article  MATH  Google Scholar 

  31. Jones, W.P., Navarro-Martinez, S.: Numerical study of n-heptane auto-ignition. Flow Turbul. Combust. 83, 407–423 (2009)

    Article  MATH  Google Scholar 

  32. Jones, W.P., Prasad, V.N.: Large Eddy Simulation of the sandia flame series (d, e and f) using the Eulerian stochastic field method. Combust. Flame (2010, in press)

  33. Jones, W.P., di Mare, F., Marquis, A.J.: LES-BOFFIN: Users Guide. Technical Memorandum, Imperial College, London (2002)

  34. Jones, W.P., Navarro-Martinez, S., Rohl, O.: Large Eddy Simulation of hydrogen auto-ignition with a probability density function method. Proc. Combust. Inst. 31, 1765–1771 (2007)

    Article  Google Scholar 

  35. Jones, W.P., Lyra, S., Marquis, A.J.: Large Eddy Simulation of evaporating kerosene and acetone sprays. Int. J. Heat Mass Transfer 53, 2491–2505 (2010)

    Article  MATH  Google Scholar 

  36. Kuo, K.K.: Principles of Combustion. Willey, New York (1986)

    Google Scholar 

  37. Lacaze, G., Cuenot, B., Poinsot, T., Oschwald, M.: Large Eddy Simulation of laser ignition and compressible flow in a rocket-like configuration. Combust. Flame 156, 1166–1180 (2009)

    Article  Google Scholar 

  38. Lacaze, G., Richardson, E., Poinsot, T.: Large Eddy Simulation of spark ignition in a turbulent methane jet. Combust. Flame 156, 1993–2009 (2009)

    Article  Google Scholar 

  39. Lavender, W.J., Pei, D.C.T.: The effect of fluid turbulence on the rate of heat transfer from spheres. Int. J. Heat Mass Transfer 10, 529–539 (1967)

    Article  Google Scholar 

  40. Lefebvre, A.H.: Atomization and Sprays. Hemisphere (1989)

  41. Lundgren, T.S.: Distribution functions in the statistical theory of turbulence. Phys. Fluids 177, 969–975 (1967)

    Article  Google Scholar 

  42. Marchione, T., Ahmed, S., Mastorakos, E.: Ignition of turbulent swirling n-heptane spray flames using single and multiple sparks. Combust. Flame 156, 166–180 (2009)

    Article  Google Scholar 

  43. Mastorakos, E.: Ignition of turbulent non-premixed flames. Pror. Energy Combust. Sci. 35, 57–97 (2009)

    Article  Google Scholar 

  44. Miller, R.S., Hastard, K., Bellan, J.: Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas-liquid flow simulations. Int. J. Multiph. Flow 24, 1025–1055 (1998)

    Article  MATH  Google Scholar 

  45. Mustata, R., Valiño, L., Jimenez, C., Jones, W.P., Bondi, S.: A probability density function eulerian monte carlo field method for Large Eddy Simulations. Application to a turbulent piloted methane/air diffusion flame. Combust. Flame 145, 88–104 (2006)

    Article  Google Scholar 

  46. Patel, N., Kirtas, M., Sankaran, V., Menon, S.: Simulation of spray combustion in a lean-direct injector combustor. Proc. Combust. Inst. 31, 2327–2334 (2007)

    Article  Google Scholar 

  47. Petersson, P., Lindholm, A., Linne, M., Alden, M.: Time resolving, non-intrusive laser diagncharacterization of lean module ignition. INTELLECT DM Project, Technical Report 3.2, Lund University (2008)

  48. Piomelli, U.: Large Eddy Simulation: achievements and challanges. Prog. Aerosp. Sci. 35, 335–362 (1999)

    Article  Google Scholar 

  49. Piomelli, U., Liu, J.: Large Eddy Simulation of rotating channel flows using a localized dynamic model. Phys. Fluids 7(4), 893–848 (1995)

    Article  Google Scholar 

  50. Pope, S.B.: PDF methods for turbulent reacting flows. Pror. Energy Combust. Sci. 11, 119–192 (1985)

    Article  MathSciNet  Google Scholar 

  51. Pope, S.B.: Turbulent Flows. Cambridge University Press (2000)

  52. Protter, M.H., Murray, H.: Maximum Principles in Differential Equations. Prentice-Hall, New Jersey (1967)

    Google Scholar 

  53. Ranz, W., Marshall, W.: Evaporation from drops, part I. Chem. Eng. Prog. 48, 141–146 (1952)

    Google Scholar 

  54. Ranz, W., Marshall, W.: Evaporation from drops, part II. Chem. Eng. Prog. 48, 173–180 (1952)

    Google Scholar 

  55. Reveillon, J., Demoulin, F.X.: Effects of the preferential segregation of droplets on evaporation and turbulent mixing. J. Fluid Mech. 583, 273–302 (2007)

    Article  MATH  Google Scholar 

  56. Reveillon, J., Pera, C., Massot, M., Knikker, R.: Eulerian analysis of the dispersion of evaporating poly dispersed sprays in a statistically stationary turbulent flow. J. Turbul. 5, 1–27 (2004)

    Article  Google Scholar 

  57. Sabel’nikov, V., Soulard, O.: Rapidly decorrelating velocity-field model as a tool for solving one-point fokker-planck equations for probability density functions of turbulent reactive scalars. Phys. Rev. E 72, 16301–163022 (2005)

    Article  Google Scholar 

  58. Schmidt, H., Schumann, U.: Coherent structure of the convective boundary layer derived from Large Eddy Simulation. J. Fluid Mech. 200, 511–562 (1989)

    Article  MATH  Google Scholar 

  59. Sirignano, W.A.: Fuel droplet vaporization and spray combustion theory. Pror. Energy Combust. Sci. 9, 291–322 (1983)

    Article  Google Scholar 

  60. Sirignano, W.A.: Fluid dynamics of sprays. J. Fluids Eng. 115, 345–378 (1993)

    Article  Google Scholar 

  61. Smagorinsky, J.: General circulation experiments with the primitive equations. I: the basic experiment. Mon. Weather Rev. 91, 99–165 (1963)

    Article  Google Scholar 

  62. Spalding, D.B.: Experiments on the burning and extinction of liquid fuel spheres. In: Proceedings of the Eleventh Symposium (International) on Combustion, pp. 847–864 (1953)

  63. Subramanian, V., Domingo, P., Vervish, L.: Large Eddy Simulation of forced ignition of an annular bluff-body burner. Combust. Flame 157, 579–601 (2010)

    Article  Google Scholar 

  64. Triantafyllidis, A., Mastorakos, E., Eggels, R.L.G.M.: Large Eddy Simulations of forced ignition of a non-premixed bluff-body methane flame with conditional moment closure. Combust. Flame 156, 2328–2345 (2009)

    Article  Google Scholar 

  65. Valiño, L.: A field Monte carlo formulation for calculating the probability density function of a single scalar in a turbulent flow. Flow Turbul. Combust. 60, 157–172 (1998)

    Article  MATH  Google Scholar 

  66. Villermaux, J., Devillon, J.C.: Représentation de la redistribution des domaines de ségrégation dans un fluide par un modéle d’interaction phénoménologique. In: Proceedings of the Second International Symposium on Chemical Reaction Engineering, pp. 1–13. Elsevier, Amsterdam (1972)

    Google Scholar 

  67. Wang, S., Yang, V., Hsiao, G., Hsieh, S., Mongia, H.: Large Eddy Simulations of turbulent reacting flows in real burners: the status and challenges. J. Fluid Mech. 583, 99–122 (2007)

    Article  MATH  Google Scholar 

  68. Wille, M.: Large Eddy Simulation of Jets in Cross Flows. PhD thesis, Department of Chemical Engineering, Imperial College of Science, Technology and Medicine, London (1997)

  69. Ying-wen, Y., Jian-xing, Z., Jing-zhou, Z., Yong, L.: Large-Eddy Simulation of two-phase spray combustion for gas turbine combustors. Proc. Combust. Inst. 28, 1365–1374 (2008)

    Google Scholar 

  70. Yuen, M.C., Chen, L.W.: On drag of evaporating liquid droplets. Combust. Sci. Technol. 14, 147–154 (1976)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William P. Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, W.P., Tyliszczak, A. Large Eddy Simulation of Spark Ignition in a Gas Turbine Combustor. Flow Turbulence Combust 85, 711–734 (2010). https://doi.org/10.1007/s10494-010-9289-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-010-9289-9

Keywords

Navigation