Skip to main content
Log in

Large Eddy Simulations of the Flow in the Near-Field Region of a Turbulent Buoyant Helium Plume

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Large eddy simulations are conducted in the near-field region of a large turbulent buoyant helium plume. The CFD package FireFOAM is applied to that purpose. The transient and mean flow dynamics are discussed as a function of grid resolution, with and without the use of the standard Smagorinsky subgrid scale (SGS) model. Small scale structures, formed at the edge of the plume inlet due to baroclinic and gravitational mechanisms and subject to flow instabilities, interact with large scale features of the flow, resulting in a puffing cycle. In general, the LES calculations reproduce the main features of the turbulent plume, with better agreement when the Smagorinsky type SGS model is applied. In particular, the puffing cycle is recovered in the simulations with correct frequency. The mean and rms values of the velocity components are well predicted with use of the SGS model, even on relatively coarse meshes. Agreement for the species mass fraction (mean and rms values) is less satisfactory, but in line with results found in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burton, G.C.: Large Eddy Simulation of a Turbulent Helium-air Plume Using the nLES Method. Center for Turbulence Research, Stanford University and NASA-Ames Research Center, Stanford, CA (2009)

  2. Nicolette, V.F., Tieszen, S.R., Domino, S.P., Black, A.R., O’Hern, T.J.: A Turbulence model for buoyant flows based on vorticity generation. Technical Report SAND2005-6273, Sandia National Laboratory, Albuquerque, NM (2005)

  3. Tieszen, S.R., Domino, S.P., Black, A.R.: Validation of a simple turbulence model suitable for closure of temporally-filtered Navier-Stokes equations using a helium plume. Technical Report SAND2005-3210, Sandia National Laboratory, Albuquerque, NM (2005)

  4. Van Maele, K., Merci, B.: Application of two buoyancy-modified k-e turbulence models to different types of buoyant plumes. Fire Saf. J. 41, 122–138 (2006)

    Article  Google Scholar 

  5. Cetegen, B.M., Ahmed, T.A.: Experiments on the periodic instability of buoyant plumes and pool fires. Combust. Flame 93, 157–184 (1993)

    Article  Google Scholar 

  6. Cetegen, B.M., Kasper, K.D.: Experiments on the oscillatory behaviour of buoyant plumes of helium and helium-air mixtures. Phys. Fluids 8, 2974–2984 (1996)

    Article  Google Scholar 

  7. Papanikolaou, P.N., List, E.J.: Investigations of round vertical turbulent buoyant jets. J. Fluid Mech. 195, 341–391 (1988)

    Article  Google Scholar 

  8. Shabbir, A., George, W.K.: Experiments on a round turbulent buoyant plume. J. Fluid Mech. 275, 1–32 (1994)

    Article  Google Scholar 

  9. Zhou, X., Luo, K.H., Williams, J.J.R.: Large eddy simulation of a turbulent forced plume. Eur. J. Mech. B/Fluids. 20, 233–254 (2001)

    Article  MATH  Google Scholar 

  10. Soteriou, M.C., Dong, Y., Cetegen, B.M.: Lagrangian simulation of unsteady near-field dynamics of planar buoyant plumes. Phys. Fluids 14, 3118–3140 (2002)

    Article  Google Scholar 

  11. Chung, W., Devaud, C.B.: Buoyancy corrected k-ϵ models and large eddy simulation applied to a large axisymmetric helium plume. Int. J. Numer. Methods Fluids 58, 57–89 (2008)

    Article  MATH  Google Scholar 

  12. Pham, M.V., Plourde, F., Doan, K.S.: Direct and large eddy simulations of a pure thermal plume. Phys. Fluids 19, 125103 (2007)

    Article  Google Scholar 

  13. DesJardin, P.E., T.J. O’Hern, Tieszen, S.R.: Large eddy simulation and experimental measurements of the near-field of a large turbulent helium plume. Phys. Fluids 16, 1866–1883 (2004)

    Article  Google Scholar 

  14. O’Hern, T.J., Weckman, E.J., Gerhart, A.L., Tieszen, S.R., Schefer, R.W.: Experimental study of a turbulent buoyant helium plume. J. Fluid Mech. 544, 143–171 (2005)

    Article  MATH  Google Scholar 

  15. Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object orientated techniques. Comput. Phys. 12, 620–631 (1998)

    Article  Google Scholar 

  16. Wang, Y., Chatterjee, P., de Ris, J.L.: Large eddy simulation of fire plumes. Proc. Combust. Inst. 33, 2473–2480 (2011)

    Article  Google Scholar 

  17. Wang, Y., Chatterjee, P., de Ris, J.L.: Large eddy simulation of thermal and fire plumes. In: Proc. of the Sixth International Seminar on Fire and Explosion Hazards, pp. 267–278 (2011)

  18. Smagorinsky, J.: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weather Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  19. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. Edwards (2001)

  20. Garnier, E., Sagaut, P., Adams, N.: Large Eddy Simulation for Compressible Flows. Springer (2009)

  21. Blanchat, T.K.: Characterization of the air source and plume source at FLAME. Technical Report SAND01-2227, Sandia National Laboratory, Albuquerque, NM (2001)

  22. Moin, P.: Advances in large eddy simulation methodology for complex flows, Int. J. Heat Fluid Flow 23, 710–720 (2002)

    Article  Google Scholar 

  23. Jiang, X., Luo, K.H.: Dynamics and structure of transitional buoyant jet diffusion flames with side-wall effects. Combust. Flame 133, 29–45 (2003)

    Article  Google Scholar 

  24. Jiang, X., Luo, K.H.: Spatial direct numerical simulation of the large vortical structures in forced plumes. Flow Turbul. Combust. 64, 43–69 (2000)

    Article  MATH  Google Scholar 

  25. Jiang X., Luo K.H.: Spatial DNS of flow transition of a rectangular buoyant reacting free-jet. J. Turbul. 2, 1–18 (2001)

    Article  MathSciNet  Google Scholar 

  26. Weckman E.J., Sobiesiak, A.: The oscillatory behavior of medium scale pool fires. Proc. Combust. Instit. 22, 1299–1310 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Maragkos.

Additional information

This research has been funded by Ghent University (Belgium) through BOF project 01J01909.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maragkos, G., Rauwoens, P., Wang, Y. et al. Large Eddy Simulations of the Flow in the Near-Field Region of a Turbulent Buoyant Helium Plume. Flow Turbulence Combust 90, 511–543 (2013). https://doi.org/10.1007/s10494-012-9437-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-012-9437-5

Keywords

Navigation