Skip to main content
Log in

LES-CMC Simulations of Different Auto-ignition Regimes of Hydrogen in a Hot Turbulent Air Co-flow

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Large-Eddy Simulation (LES) results in combination with first-order Conditional Moment Closure (CMC) are presented for a hydrogen jet, diluted with nitrogen, issued into a turbulent co-flowing hot air stream. The fuel mixes with the co-flow air, ignites and forms a lifted-like flame. Global trends in the experimental observations are in general well reproduced: the auto-ignition length decreases with increase in co-flow temperature and increases with increase in co-flow velocity. In the experiments, the co-flow temperature was varied, so that different auto-ignition regimes, including low Damköhler number situations, were obtained (no ignition, random spots, flashback and lifted flame). All regimes are recovered in the simulations. Auto-ignition is found to be the stabilizing mechanism. The impact of different detailed chemistry mechanisms on the auto-ignition predictions is discussed. With increasing air temperature, the differences between the mechanisms considered diminish. The evolution of temperature, H2O, H, HO2 and OH from inert to burning conditions is discussed in mixture fraction space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mastorakos, E.: Ignition of turbulent non-premixed flames. Prog. Energy Combust. Sci. 35, 57–97 (2009)

    Article  Google Scholar 

  2. Klimenko, A.Y., Bilger, R.W.: Conditional moment closure for turbulent combustion. Prog. Energy Combust. Sci. 25, 595–687 (1999)

    Article  Google Scholar 

  3. Pope, S.B.: PDF methods for turbulent reactive flows. Prog. Energy Combust Sci 11, 119–192 (1985)

    Article  MathSciNet  Google Scholar 

  4. Di Mare, F., Jones, W.P., Menzies, K.R.: Large eddy simulation of a model gas turbine combustor. Combust. Flame 137, 278–294 (2004)

    Article  Google Scholar 

  5. Pitsch, H., Steiner, H.: Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D). Phys. Fluids 12, 2541–2554 (2000)

    Article  Google Scholar 

  6. Ihme, M., See, C.S.: Prediction of auto-ignition in a lifted methane/air flames using an unsteady flamelet/progress variable model. Combust. Flame 157, 1850–1862 (2010)

    Article  Google Scholar 

  7. Ramaekers, W.J.S., van Oijen, J.A., de Goey, L.P.H.: A priori testing of flamelet generated manifolds for turbulent partially premixed methane/air flames. Flow Turbl. Combust. 84, 439–458 (2010)

    Article  MATH  Google Scholar 

  8. Cabra, R., Myhrvold, T., Chen, J.Y., Dibble, R.W., Karpetis, A.N., Barlow, R.S.: Simultaneous laser Raman-Rayleigh-Lif measurements and numerical modeling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow. Proc. Combust. Inst. 29, 1881–1888 (2002)

    Article  Google Scholar 

  9. Markides, C.N., Mastorakos, E.: An experimental study of hydrogen auto-ignition in a turbulent co-flow of heated air. Proc. Combust. Inst. 30, 883–891 (2005)

    Article  Google Scholar 

  10. Gordon, R.L., Masri, A.R., Pope, S.B., Goldin, G.M.: A numerical study of auto-ignition in turbulent lifted flames issuing into vitiated co-flow. Combust. Theory Model. 11, 351–376 (2007)

    Article  MATH  Google Scholar 

  11. Triantafyllidis, A., Mastorakos, E.: Implementation issues of the conditional moment closure model in large eddy simulations. Flow Turbul. Combust. 84, 481–512 (2010)

    Article  MATH  Google Scholar 

  12. Triantafyllidis, A., Mastorakos, E., Eggels, R.L.G.M.: Large eddy simulations of forced ignition of a non-premixed bluff-body methane flame with conditional moment closure. Combust. Flame 156, 2328–2345 (2009)

    Article  Google Scholar 

  13. Stanković, I., Triantafyllidis, A., Mastorakos, E., Lacor, C., Merci, B.: Simulation of hydrogen auto-ignition in a turbulent co-flow of heated air with LES and CMC approach. Flow Turb. Combust. 86, 689–710 (2011)

    Article  MATH  Google Scholar 

  14. Gordon, R.L., Masri, A.R., Mastorakos, E.: Heat release rate as represented by [OH]x[CH2O] and its role in autoignition. Combust. Theory Model. 13, 645–670 (2009)

    Article  Google Scholar 

  15. Gordon, R.L., Masri, A.R., Mastorakos, E.: Simultaneous Rayleigh temperature, OH- and CH2O-LIF imaging of methane jets in a vitiated coflow. Combust. Flame 155, 181–195 (2008)

    Article  Google Scholar 

  16. Jones, W.P., Navarro-Martinez, S.: Study of hydrogen auto-ignition in a turbulent air co-flow using a large eddy simulation approach. Comput. Fluids 37, 802–808 (2008)

    Article  MATH  Google Scholar 

  17. Jones, W.P., Navarro-Martinez, S., Rohl, O.: Large eddy simulation of hydrogen auto-ignition with a probability density function method. Proc. Combust. Inst. 31, 1765–1771 (2007)

    Article  Google Scholar 

  18. Galpin, J., Angelberger, C., Naudin, A., Vervisch, L.: Large-eddy simulation of H2-air auto-ignition using tabulated detailed chemistry. J. Turbul. 9, 1–21 (2008)

    Google Scholar 

  19. Patwardhan, S.S., Lakshmisha, K.N.: Auto-ignition of turbulent hydrogen jet in a co-flow of heated air. Int. J. Hydrogen Energy 33, 7265–7273 (2008)

    Article  Google Scholar 

  20. Navarro-Martinez, S., Kronenburg, A.: Flame stabilization mechanisms in lifted flames. Flow Turbl. Combust. 87, 377–406 (2011)

    Article  MATH  Google Scholar 

  21. Stanković, I., Merci, B.: Analysis of auto-ignition of heated hydrogen/air mixtures with different detailed reaction mechanisms. Combust. Theory Model. 15, 409–436 (2011)

    Article  MATH  Google Scholar 

  22. Li, J., Zhao, Z., Kazakov, A., Dryer, F.L.: An updated comprehensive kinetic model of hydrogen combustion. Inter. J. Chem. Kinet. 36, 566–575 (2004)

    Article  Google Scholar 

  23. Mueller, M.A., Kim, T.J., Yetter, R.A., Dryer, F.L.: Flow reactor studies and kinetic modeling of the H2/O2 reaction. Inter. J. Chem. Kinet. 31, 113–125 (1999)

    Article  Google Scholar 

  24. Yetter, R.A., Dryer, F.L., Rabitz, H.: A comprehensive reaction-mechanism for carbon-monoxide hydrogen oxygen kinetics. Combust. Sci. Technol. 79, 97–128 (1991)

    Article  Google Scholar 

  25. O’Conaire, M., Curran, H.J., Simmie, J.M., Pitz, W.J., Westbrook, C.K.: A comprehensive modeling study of hydrogen oxidation. Inter. J. Chem. Kinet. 36, 603–622 (2004)

    Article  Google Scholar 

  26. Konnov, A.A.: Remaining uncertainties in the kinetic mechanism of hydrogen combustion. Combust. Flame 152, 507–528 (2008)

    Article  Google Scholar 

  27. Cao, R.R., Pope, S.B., Masri, A.R.: Turbulent lifted flames in a vitiated co-flow investigated using joint PDF calculations. Combust. Flame 142, 438–453 (2005)

    Article  Google Scholar 

  28. Masri, A.R., Cao, R., Pope, S.B., Goldin, G.M.: PDF calculations of turbulent lifted flames of H2/N2 fuel issuing into a vitiated co-flow. Combust. Theory Model. 8, 1–22 (2004)

    Article  Google Scholar 

  29. Gkagkas, K., Lindstedt, R.P.: The impact of reduced chemistry on auto-ignition of H2 in turbulent flows. Combust. Theory Model. 13, 607–643 (2009)

    Article  MATH  Google Scholar 

  30. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  31. Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  32. Pierce, C.D., Moin, P.: A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar. Phys. Fluids 10, 3041–3044 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Girimaji, S.S., Zhou, Y.: Analysis and modeling of subgrid scalar mixing using numerical data. Phys. Fluids 8, 1224–1236 (1996)

    Article  MATH  Google Scholar 

  34. Navarro-Martinez, S., Kronenburg, A., Di Mare, F.: Conditional moment closure for large eddy simulations. Flow Turbul. Combust. 75, 245–274 (2005)

    Article  MATH  Google Scholar 

  35. Kim, S.H., Pitsch, H.: Mixing characteristics and structure of a turbulent jet diffusion flame stabilized on a bluff-body. Phys. Fluids 18, 075103 (2006)

    Article  Google Scholar 

  36. O’Brien, E.E., Jiang, T.L.: The conditional dissipation rate of an initially binary scalar in homogeneous turbulence. Phys. Fluids 3, 3121–3123 (1991)

    Article  MATH  Google Scholar 

  37. Broeckhoven, T.: LES of turbulent combustion: numerical study and applications. PhD thesis, VUB - Department of Mechanical engineering (2007)

  38. De Paola, G., Kim, I.S., Mastorakos, E.: Second-order conditional moment closure simulations of autoignition of an n-heptane plume in a turbulent co-flow of heated air. Flow Turbl. Combust. 82, 455–475 (2009)

    Article  MATH  Google Scholar 

  39. Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186, 652–665 (2003)

    Article  MATH  Google Scholar 

  40. Mastorakos, E., Baritaud, T.A., Poinsot, T.J.: Numerical simulations of auto-ignition in turbulent mixing flows. Combust. Flame 109, 198–233 (1997)

    Article  Google Scholar 

  41. Bilger, R.W., Starner, S.H., Kee, R.J.: On reduced mechanisms for methane-air combustion in nonpremixed flames. Combust. Flame 80, 135–149 (1990)

    Article  Google Scholar 

  42. Wu, Z., Starner, S.H., Bilger, R.W.: Lift-off heights of turbulent H2/N2 jet flames in a vitiated co-flow. In: Proceedings of the 2003 Australian Symposium on Combustion and the Eighth Australian Flame Days. The Combustion Institute (2003)

  43. Jones, W.P., Navarro-Martinez, S.: Numerical study of n-heptane auto-ignition using LES-PDF methods. Flow Turbl. Combust. 83, 407–423 (2009)

    Article  MATH  Google Scholar 

  44. Markides, C.N., Mastorakos, E.: Experimental investigation of the effects of turbulence and mixing on autoignition chemistry. Flow Turbl. Combust. 86, 585–608 (2011)

    Article  MATH  Google Scholar 

  45. Lee, C.W., Mastorakos, E.: Transported scalar PDF calculations of autoignition of a hydrogen jet in a heated turbulent co-flow. Combust. Theory Model. 12, 1153-1178 (2008)

    Article  MATH  Google Scholar 

  46. Markides, C.N., De Paola, G., Mastorakos, E.: Measurements and simulations of mixing and auto-ignition of an n-heptane plume in a turbulent flow of heated air. Exp. Therm. Fluid Sci. 31, 393–401 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Stanković.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanković, I., Mastorakos, E. & Merci, B. LES-CMC Simulations of Different Auto-ignition Regimes of Hydrogen in a Hot Turbulent Air Co-flow. Flow Turbulence Combust 90, 583–604 (2013). https://doi.org/10.1007/s10494-013-9443-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-013-9443-2

Keywords

Navigation