Skip to main content
Log in

A Two-length Scale Turbulence Model for Single-phase Multi-fluid Mixing

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A two-length scale, second moment turbulence model (Reynolds averaged Navier-Stokes, RANS) is proposed to capture a wide variety of single-phase flows, spanning from incompressible flows with single fluids and mixtures of different density fluids (variable density flows) to flows over shock waves. The two-length scale model was developed to address an inconsistency present in the single-length scale models, e.g. the inability to match both variable density homogeneous Rayleigh-Taylor turbulence and Rayleigh-Taylor induced turbulence, as well as the inability to match both homogeneous shear and free shear flows. The two-length scale model focuses on separating the decay and transport length scales, as the two physical processes are generally different in inhomogeneous turbulence. This allows reasonable comparisons with statistics and spreading rates over such a wide range of turbulent flows using a common set of model coefficients. The specific canonical flows considered for calibrating the model include homogeneous shear, single-phase incompressible shear driven turbulence, variable density homogeneous Rayleigh-Taylor turbulence, Rayleigh-Taylor induced turbulence, and shocked isotropic turbulence. The second moment model shows to compare reasonably well with direct numerical simulations (DNS), experiments, and theory in most cases. The model was then applied to variable density shear layer and shock tube data and shows to be in reasonable agreement with DNS and experiments. The importance of using DNS to calibrate and assess RANS type turbulence models is also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cebeci, T., Smith, A.M.O.: Analysis of turbulent boundary layers, Series: Applied Mathematics and Mechanics. Academic Press, NY (1974)

    Google Scholar 

  2. Besnard, D., Harlow, F.H., Rauenzahn, R.M., Zemach, C.: Turbulence transport equations for variable-density turbulence and their relationship to two-field models, Los Alamos National Laboratory Technical Report, LA-UR-12303 (1992)

  3. Grégoire, O., Souffland, D., Gauthier, S.: A second-order turbulence model for gaseous mixtures induced by Richtmyer-Meshkov instability. J. Turb. 6, 1 (2005)

    Article  Google Scholar 

  4. Poggi, F., Thorembey, M.-H., Rodriguez, G.: Velocity measurements in turbulent gaseous mixtures induced by Richtmyer-Meshkov instability. Phys. Fluids 10, 2698 (1998)

    Article  Google Scholar 

  5. Andronov, V.A., Barkhrakh, S.M., Meshkov, E.E., Nikiforov, V.V., Pevnitskii, A.V., Tolshmyakov, A.I.: An experimental investigation and numerical modeling of turbulent mixing in one-dimensional flows. Sov. Phys. Dokl. 27, 393 (1982)

    Google Scholar 

  6. Banerjee, A., Gore, R.A., Andrews, M.J.: Development and validation of a turbulent-mix model for variable-density and compressible flows. Phys. Rev. E 82, 046309 (2010)

    Article  MathSciNet  Google Scholar 

  7. Stalsberg-Zarling, K., Gore, R.A.: The BHR2 turbulence model: incompressible isotropic decay, Rayleigh-Taylor, Kelvin-Helmholtz and homogeneous variable density turbulence, Los Alamos National Laboratory Technical Report., LA-UR 11–04773 (2011)

  8. Schwarzkopf, J.D., Livescu, D., Gore, R.A., Rauenzahn, R.M., Ristorcelli, J.R.: Application of a second-moment closure model to mixing processes involving multicomponent miscible fluids. J. Turb. 12(49), 1 (2011)

    MathSciNet  Google Scholar 

  9. Livescu, D., Ristorcelli, J.R., Gore, R.A., Dean, S.H., Cabot, W.H., Cook, A.W.: High-Reynolds number Rayleigh-Taylor turbulence. J. Turb. 10, 1 (2009)

    Article  MathSciNet  Google Scholar 

  10. Souffland, D., Grégoire, O., Gauthier, S., Schiestel, R.: A two-time-scale model for turbulent mixing flows induced by Rayleigh-Taylor and Richtmyer-Meshkov instabilities. J. Flow Turb. Comb. 69, 123 (2002)

    Article  MATH  Google Scholar 

  11. Scheistel, R.: Multiple-time-scale modeling of turbulent flows in one-point closures. Phys. Fluids 30(3), 722 (1987)

    Article  Google Scholar 

  12. Taylor, G.I.: Diffusion by continuous movements. Proc. Lond. Math. Soc. 20, 196 (1921)

    MATH  Google Scholar 

  13. Batchelor, G.K.: Diffusion in a field of homogeneous turbulence: 1. Eulerian analysis. Aust, J. Sci. Res. 2(4), 437 (1949)

    MathSciNet  Google Scholar 

  14. Tennekes, H., Lumley, J. L.: A first course in turbulence. MIT Press, MA, Cambridge (1972)

    Google Scholar 

  15. Frisch: Turbulence. Cambridge University Press (1995)

  16. Sreenivasan, K.R.: An update on the energy dissipation rate in isotropic turbulence. Phys. Fluids 10(2), 528 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Batchelor, G.K.: The theory of homogeneous turbulence. Cambridge University Press (1953)

  18. Monin, A.S., Yaglom, A.M.: Statistical fluid mechanics; mechanics of turbulence. MIT Press, Cambridge, MA (1971)

    Google Scholar 

  19. Pope, S. B.: Turbulent Flows. Cambridge University Press, NY (2000)

    Book  MATH  Google Scholar 

  20. Williams, F.A.: Combustion Theory, 2nd edn. Addison-Wesley, Reading, MA (1985)

    Google Scholar 

  21. Cook, A.W.: Enthalpy diffusion in multicomponent flows. Phys. Fluids 21, 055109 (2009)

    Article  Google Scholar 

  22. Banerjee, S., Ertunç, Ö., Köksoy, Ç., Durst, F.: Pressure strain rate modeling of homogeneous axisymmetric turbulence. J. Turb. 10, 1 (2009)

    Article  Google Scholar 

  23. Gittings, M., Weaver, R., Clover, M., Betlach, T., Byrne, N., Coker, R., Dendy, E., Hueckstaedt, R., New, K., Oakes, W.R., Ranta, D., Stefan, R.: The RAGE radiation-hydrodynamic code. Comp. Sci. Disc. 1, 015005 (2008)

    Article  Google Scholar 

  24. Young, D.P., Melvin, R.G., Bieterman, M.B., Johnson, F.T., Samant, S.S., Bussoletti, J.E.: A locally refined rectangular grid finite element method: application to computational fluid dynamics and computational physics. J. Comput. Phys. 92, 1 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hanjalic, K., Launder, B.E.: A Reynolds stress model of turbulence and its application to thin shear flows. J. Fluid Mech. 52, 609 (1972)

    Article  MATH  Google Scholar 

  26. Batchelor, G.K., Townsend, A.A.: Decay of isotropic turbulence in the initial period. Proc. Roy. Soc. A 193, 539 (1948)

    Article  MATH  Google Scholar 

  27. Launder, B.E., Reese, G.J., Rodi, W.: Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 68, 537 (1975)

    Article  MATH  Google Scholar 

  28. Shih, T.-S., Liou, W.W., Shabbir, A., Yang, Z., Zhu, J.: A new k-e eddy viscosity model for high Reynolds number turbulent flows. Comput. Fluid. 24, 227 (1995)

    Article  MATH  Google Scholar 

  29. King, A. T., Tinoco, R. O., Cowen, E. A.: A k-e turbulence model based on the scales of vertical shear and stem wakes valid for emergent and submerged vegetated flows. J. Fluid Mech. 701, 1 (2012)

    Article  MATH  Google Scholar 

  30. Edeling, W.N., Cinnella, P., Dwight, R.P., Bijl, H.: Baysian estimates of parameter variability in the k-e turbulence model. J. Comp. Phys. 258, 73 (2014)

    Article  MathSciNet  Google Scholar 

  31. Mohamed, M.S., LaRue, J.C.: The decay power law in grid-generated turbulence. J. Fluid Mech. 219, 195 (1990)

    Article  Google Scholar 

  32. Perot, J.B., De Bruyn Kops, S.M.: Modeling turbulent dissipation at low and moderate Reynolds numbers. J. Turb. 7(69) (2006)

  33. Sandoval, D.L.: The dynamics of variable density turbulence, Los Alamos National Laboratory, Technical Report., LA-13037-T (1995)

  34. Livescu, D., Ristorcelli, J.R.: Buoyancy-driven variable-density turbulence. J. Fluid Mech. 591, 43 (2007)

    Article  MATH  Google Scholar 

  35. Livescu, D., Ristorcelli, J.R.: Variable-density mixing in buoyancy-driven turbulence. J. Fluid Mech. 605, 145 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Livescu, D., Canada, C., Burns, R.: IDIES staff, J. Pulido, 2014, Homogeneous Buoyancy Driven Turbulence Data Set, Los Alamos National Laboratory Technical Report. LA-UR-14-20669, available at http://turbulence.pha.jhu.edu/docs/README-HBDT.pdf

  37. Tavoularis, S., Corrsin, S.: Experiments in nearly homogeneous turbulent shear flow with a uniform temperature gradient, Part 1. J. Fluid Mech. 104, 311 (1981)

    Article  Google Scholar 

  38. Rogers, M.M., Moin, P.: The structure of the vorticity field in homogeneous turbulent flows. J. Fluid Mech. 176, 33 (1987)

    Article  Google Scholar 

  39. Bernard, P.S., Wallace, J.M.: Turbulent Flow Analysis, Measurement and Prediction. Wiley, NJ (2002)

    Google Scholar 

  40. Chen, C.J., Jaw, S.Y.: Fundamentals of Turbulence Modeling. Taylor and Francis, Washington DC (1998)

    Google Scholar 

  41. Marusic, I., Monty, J.P., Hultmark, M., Smits, A.J.: On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3 (2013)

    Article  MathSciNet  Google Scholar 

  42. Cabot, W.H., Cook, A.W.: Reynolds number effects on Rayleigh-Taylor instability with possible implications for type-1a supernovae. Nat. Phys. 2, 562 (2006)

    Article  Google Scholar 

  43. Rotta, J.C.: Statistische theorie nichthomogener turbulenz. Z. Phys. 129, 547 (1951). an English translation

    Article  MathSciNet  MATH  Google Scholar 

  44. Naot, D., Shavit, A., Wolfshtein, M.: Interactions between components of the turbulent velocity correlation tensor due to pressure fluctuations. Israel J. Tech. 8, 259 (1970)

    Article  MATH  Google Scholar 

  45. Launder, B.E.: Second-moment closure: present…and future? Int. J. Heat Fluid Flow 10, 282 (1989)

    Article  Google Scholar 

  46. Bell, J.H., Mehta, R.D.: Development of a two-stream mixing layer from tripped and untripped boundary layers. AIAA J. 28, 2034 (1990)

    Article  Google Scholar 

  47. Riley, J.J., Metcalfe, R.W., Orszag, S.A.: Direct numerical simulations of chemically reacting turbulent mixing layers. Phys. Fluids 29, 406 (1986)

    Article  Google Scholar 

  48. Livescu, D., Mohd-Yusof, J., Petersen, M.R., Grove, J.W.: CFDNS: A computer code for direct numerical simulation of turbulent flows, Los Alamos National Laboratory Technical Report., LA-CC-09-100 (2009)

  49. Livescu, D., Ristorcelli, J.R., Petersen, M.R., Gore, R.A.: New phenomena in variable-density Rayleigh-Taylor turbulence. Phys. Scr. T 142, 014015–1–12 (2010)

    Article  Google Scholar 

  50. Livescu, D., Wei, T., Petersen, M.R.: Direct numerical simulations of Rayleigh-Taylor instability. J. Phys.: Conf. Ser. 318, 082007 (2011)

    Google Scholar 

  51. Wei, T., Livescu, D.: Late-time quadratic growth in single-mode Rayleigh-Taylor instability. Phys. Rev. E 86, 046405 (2012)

    Article  Google Scholar 

  52. Zwillinger, D.: Standard Mathematical Tables and Formulae, 30th edn. CRC Press, Boca Raton, Fl (1996)

    MATH  Google Scholar 

  53. Rogers, M.M., Moser, R.D.: Direct simulation of a self-similar turbulent mixing layer. Phys. Fluids 6, 903 (1994)

    Article  MATH  Google Scholar 

  54. Pantano, C., Sarkar, S.: A study of compressibility effects in the high-speed turbulent shear layer using direct simulation. J. Fluid Mech. 451, 329 (2002)

    Article  MATH  Google Scholar 

  55. Baltzer, J.R., Livescu, Schwarzkopf, J.D.: Variable density effects in mixing layers, Los Alamos National Laboratory Technical Report., LA-UR-15-20554 (2015)

  56. Rogers, M.M., Moser, R.D.: The three-dimensional evolution of a plane mixing layer: the Kelvin–Helmholtz rollup. J. Fluid Mech. 243, 183 (1992)

    Article  MATH  Google Scholar 

  57. Agui, J.H., Briassulis, G., Andreopoulos, Y.: Studies of interactions of a propagating shock wave with decaying grid turbulence: velocity and vorticity fields. J. Fluid Mech. 524, 143 (2005)

    Article  MATH  Google Scholar 

  58. Barre, S., Alem, D., Bonnet, J.P.: Experimental study of a normal shock/homogeneous turbulence interaction. AIAA J. 34(5), 968 (1996)

    Article  Google Scholar 

  59. Lee, S.S., Lele, S.K., Moin, P.: Direct numerical-simulation of isotropic turbulence interacting with a weak shock-wave. J. Fluid Mech. 264, 373 (1993)

    Article  Google Scholar 

  60. Ryu, J., Livescu, D.: Turbulence characteristics behind the shock in canonical shock-vortical turbulence interaction. J. Fluid Mech. 756, R1 (2014)

    Article  Google Scholar 

  61. Livescu, D., Ryu, J.: Vorticity dynamics after the shock-turbulence interaction, Shock Waves, doi:10.1007/s00193-015-0580-5 (2015)

  62. Ribner, H.S.: Convection of a pattern of vorticity through a shock wave, NACA TR-1164 (1954)

  63. Moore, F.K.: Unsteady oblique interaction of a shock wave with a plane disturbance, NACA TR-1165 (1954)

  64. Sinha, K., Mahesh, K., Candler, G.V.: Modeling shock unsteadiness in shock/turbulence interaction. Phys. Fluids 15(8), 2290 (2003)

    Article  Google Scholar 

  65. Richtmyer, R.D.: Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13, 297 (1960)

    Article  MathSciNet  Google Scholar 

  66. Meshkov, E.E.: Instability of the interface of two gases accelerated by a shock wave. Sov. Fluid Dyn. 4, 101 (1969)

    Article  MathSciNet  Google Scholar 

  67. Vetter, M., Sturtevant, B.: Experiments on the Richtmyer-Meshkov instability of an air/SF 6 interface. Shock Waves 4, 247 (1995)

    Article  Google Scholar 

  68. Hill, D.J., Pantano, C., Pullin, D.I.: Large-eddy simulation and multiscale modeling of a Richtmyer-Meshkov instability with reshock. J. Fluid Mech. 557, 29 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  69. Grinstein, F.F., Gowardhan, A.A., Wachtor, A.J.: Simulations of Richtmyer-Meshkov instabilities in planar shock-tube experiments. Phys. Fluids 23, 034106 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Schwarzkopf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwarzkopf, J.D., Livescu, D., Baltzer, J.R. et al. A Two-length Scale Turbulence Model for Single-phase Multi-fluid Mixing. Flow Turbulence Combust 96, 1–43 (2016). https://doi.org/10.1007/s10494-015-9643-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9643-z

Keywords

Navigation