Skip to main content
Log in

Evaluations of SGS Combustion, Scalar Flux and Stress Models in a Turbulent Jet Premixed Flame

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A newly developed fractal dynamic SGS (FDSGS) combustion model and a scale self-recognition mixed (SSRM) SGS stress model are evaluated along with other SGS combustion, scalar flux and stress models in a priori and a posteriori manners using DNS data of a hydrogen-air turbulent plane jet premixed flame. A posteriori tests reveal that the LES using the FDSGS combustion model can predict the combustion field well in terms of mean temperature distributions and peak positions in the transverse distributions of filtered reaction progress variable fluctuations. A priori and a posteriori tests of the scalar flux models show that a model proposed by Clark et al. accurately predicts the counter-gradient transport as well as the gradient diffusion, and introduction of the model of Clark et al. into the LES yields slightly better predictions of the filtered progress variable fluctuations than that of a gradient diffusion model. Evaluations of the stress models reveal that the LES with the SSRM model predicts the velocity fluctuations well compared to that with the Smagorinsky model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bardina, J., Ferziger, J., Reynolds, W.: Improved subgrid-scale models for large-eddy simulation. AIAA J. 80(1357) (1980)

  2. Baum, M., Poinsot, T., Thevenin, D.: Accurate boundary conditions for multicomponent reactive flows. J. Comput. Phys. 106, 247–261 (1994)

    MATH  Google Scholar 

  3. Boger, M., Veynante, D., Boughanem, H., Trouvé, A.: Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Proc. Combust. Inst. 27(1), 917–925 (1998)

    Article  Google Scholar 

  4. Brown, P., Byrne, G., Hindmarsh, A.: VODE: A variable-coefficient ODE solver. SIAM J. Sci. Statist. Compt. 10, 1038–1051 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chakraborty, N., Klein, M.: A priori direct numerical simulation assessment of algebraic flame surface density models for turbulent premixed flames in the context of large eddy simulation. Phys. Fluids 20(085), 108 (2008)

    MATH  Google Scholar 

  6. Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion part I: Non-dynamic formulation and initial tests. Combust. Flame 131, 159–180 (2002)

    Article  Google Scholar 

  7. Chatakonda, O., Hawkes, E.R., Brear, M.J., Chen, J.H., Knudsen, E., Pitsch, H.: Modeling of the wrinkling of premixed turbulent flames in the thin reaction zones regime for large eddy simulation. Proc. CTR Summer Program., 271–280 (2010)

  8. Clark, R.A., Ferziger, J.H., Reynolds, W.C.: Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J. Fluid Mech. 91(1), 1–16 (1979)

    Article  MATH  Google Scholar 

  9. Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulation of turbulent premixed combustion. Phys. Fluids 12(7), 1843–1863 (2000)

    Article  MATH  Google Scholar 

  10. Damköhler, G.: Der einfluss der turbulenz auf die flammengeschwindigkeit in gasgemischen. Z. Elektrochem. 46(11), 601–626 (1940)

    Google Scholar 

  11. Domingo, P., Vervisch, L., Payet, S., Hauguel, R.: DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry. Combust. Flame 143, 566–586 (2005)

    Article  Google Scholar 

  12. Flohr, P., Pitsch, H.: A turbulent flame speed closure model for LES of industrial burner flows. Proc. CTR Summer Program., 169–179 (2000)

  13. Fukushima, N., Naka, Y., Hiraoka, K., Shimura, M., Tanahashi, M., Miyauchi, T.: A scale self-recognition mixed SGS model based on the universal representation of Kolmogorov length by GS variables. In: Proc 9th Turbulence and Shear Flow Phenomena (2015)

  14. Fureby, C.: A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion. Proc. Combust. Inst. 30, 593–601 (2005)

    Article  Google Scholar 

  15. Gao, Y., Chakraborty, N., Klein, M.: Assessment of the performances of sub-grid scalar flux models for premixed flames with different global lewis numbers: A direct numerical simulation analysis. Int. J. Heat Fluid Flow 52, 28–39 (2015)

    Article  Google Scholar 

  16. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3(7), 1760–1765 (1991)

    Article  MATH  Google Scholar 

  17. Gicquel, L.Y.M., Staffelbach, G., Poinsot, T.: Large eddy simulation of gaseous flames in gas turbine combustion chambers. Prog. Energy Combust. Sci. 38, 782–817 (2012)

    Article  Google Scholar 

  18. Gutheil, E., Balakrishnan, G., Williams, F.A.: Structure and extinction of hydrogen–air diffusion flames. In: Peters, N., Rogg, B. (eds.) Lecture Notes in Physics: Reduced kinetic mechanisms for applications in combustion systems., pp. 177–195. Springer Verlag, New York (1993)

  19. Haworth, D.C.: Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 36, 168–259 (2010)

    Article  Google Scholar 

  20. Hiraoka, K., Minamoto, Y., Shimura, M., Naka, Y., Fukushima, N., Tanahashi, M.: A fractal dynamic SGS combustion model for large eddy simulation of turbulent premixed flames. Comb. Sci. Technol.

  21. Huai, Y., Sadiki, A., Pfadler, S., Löffler, M., Beyrau, F., Leipertz, A., Dinkelacker, F.: Experimental assessment of scalar flux models for large eddy simulations of non-reacting flows. Proc. 5th Turbulence. Heat Mass Transf., 263–266 (2006)

  22. Jiang, G.S., Peng, D.: Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21, 2126–2143 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kerstein, A.R., Ashurst, W.T., Williams, F.A.: Field equation for interface propagation in an unsteady homogeneous flow field. Phys. Rev. A 37(7), 2728–2731 (1988)

    Article  Google Scholar 

  24. Kim, J., Pope, S.B.: Effects of combined dimension reduction and tabulation on the simulations of a turbulent premixed flame using a large-eddy simulation/probability density function method. Combust. Theory Model 18(3), 388–413 (2014)

    Article  MathSciNet  Google Scholar 

  25. Knikker, R., Veynante, D., Meneveau, C.: A dynamic flame surface density model for large eddy simulation of turbulent premixed combustion. Phys. Fluids 16 (11), 91–94 (2004)

    Article  MATH  Google Scholar 

  26. Kobayashi, H.: The subgrid-scale models based on coherent structures for rotating homogeneous turbulence and turbulent channel flow. Phys. Fluids 17(045), 104 (2005)

    MATH  Google Scholar 

  27. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lipatnikov, A.N., Chomiak, J.: Effects of premixed flames on turbulence and turbulent scalar transport. Prog. Energy Combust. Sci. 36, 1–102 (2010)

    Article  Google Scholar 

  29. Liu, X.D., Osher, S.: Chan., T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Michalke, A.: On the inviscid instability of the hyperbolic-tangent velocity profile. J. Fluid Mech. 19(4), 543–556 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  31. Miyauchi, T., Tanahashi, M., Gao, F.: Fractal characteristics of turbulent diffusion flames. Comb. Sci. Technol. 96, 135–154 (1994)

    Article  Google Scholar 

  32. Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbulence Combust. 62, 183–200 (1999)

    Article  MATH  Google Scholar 

  33. Peters, N.: Turbulent Combustion. Cambridge Press (2000)

  34. Pfadler, S., Kerl, J., Beyrau, F., Leipertz, A., Sadiki, A., Scheuerlein, J., Dinkelacker, F.: Direct evaluation of the subgrid scale scalar flux in turbulent premixed flames with conditioned dual-plane stereo PIV. Proc. Combust. Inst. 32, 1723–1730 (2009)

    Article  Google Scholar 

  35. Pitsch, H.: A consistent level set formulation for large-eddy simulation of premixed turbulent combustion. Combust. Flame 143(4), 587–598 (2005)

    Article  Google Scholar 

  36. Pitsch, H.: Large eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38, 453–482 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pitsch, H., Duchamp De Lageneste, L.: Large-eddy simulation of premixed turbulent combustion using a level-set approach. Proc. Combust. Inst. 29, 2009–2015 (2002)

    Article  Google Scholar 

  38. Poinsot, T.J., Lele, S.K.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  39. Richard, S., Colin, O., Vermorel, O., Benkenida, A., Angelberger, C., Veynante, D.: Towards large eddy simulation of combustion in spark ignition engines. Proc. Combust. Inst. 31, 3059–3066 (2007)

    Article  Google Scholar 

  40. Shim, Y., Tanaka, S., Tanahashi, M., Miyauchi, T.: Local structure and fractal characteristics of H 2-air turbulent premixed flame. Proc. Combust. Inst. 33, 1455–1462 (2011)

    Article  Google Scholar 

  41. Shimura, M., Yamawaki, K., Fukushima, N., Shim, Y.S., Nada, Y., Tanahashi, M., Miyauchi, T.: Flame and eddy structures in hydrogen-air turbulent jet premixed flame. J. Turbulence 13(42), 1–17 (2012)

    MathSciNet  MATH  Google Scholar 

  42. Tanahashi, M., Iwase, S., Miyauchi, T.: Appearance and alignment with strain rate of coherent fine scale eddies in turbulent mixing layer. J. Turbulence 2(6), 1–18 (2001)

    MathSciNet  MATH  Google Scholar 

  43. Thornber, B., Bilger, R.W., Masri, A.R., Hawkes, E.R.: An algorithm for LES of premixed compressible flows using the conditional moment closure model. J. Comput. Phys. 230, 7687–7705 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Tullis, S., Cant, R.S.: Scalar transport modeling in large eddy simulation of turbulent premixed flames. Proc. Combust. Inst. 29, 2097–2104 (2002)

    Article  MATH  Google Scholar 

  45. Veynante, D., Trouvé, A., Bray, K.N.C., Mantel, T.: Gradient and counter-gradient scalar transport in turbulent premixed flames. J. Fluid Mech. 332, 263–293 (1997)

    MATH  Google Scholar 

  46. Veynante, D., Vervisch, L.: Turbulent combustion modeling. Prog. Energy Combust. Sci. 28, 193–266 (2002)

    Article  Google Scholar 

  47. Weller, H.G., Tabor, G., Gosman, A.D., Fureby, C.: Application of a flame-wrinkling LES combustion model to a turbulent mixing layer. Proc. Combust. Inst. 27, 899–907 (1998)

    Article  Google Scholar 

  48. Yoshikawa, I., Shim, Y.S., Nada, Y., Tanahashi, M., Miyauchi, T.: A dynamic SGS combustion model based on fractal characteristics of turbulent premixed flames. Proc. Combust. Inst. 34, 1373–1381 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by Grant-in-Aid for Scientific Research (S) (No. 23226005) of Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hiraoka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiraoka, K., Naka, Y., Shimura, M. et al. Evaluations of SGS Combustion, Scalar Flux and Stress Models in a Turbulent Jet Premixed Flame. Flow Turbulence Combust 97, 1147–1164 (2016). https://doi.org/10.1007/s10494-016-9756-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-016-9756-z

Keywords

Navigation