Skip to main content
Log in

Assessment of FSD and SDR Closures for Turbulent Flames of Alternative Fuels

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Detailed-chemistry DNS studies are becoming more common due to the advent of more powerful modern computer architectures, and as a result more realistic flames can be simulated. Such flames involve many alternative fuels such as syngas and blast furnace gas, which are usually composed of many species and of varying proportions. In this study, we evaluate whether some of the commonly used models for the scalar dissipation rate and flame surface density can be used to model such flames in the LES context. A priori assessments are conducted using DNS data of multi-component fuel turbulent premixed flames. These flames offer unique challenges because of their complex structure having many distinct consumption layers for the different fuel components unlike in a single-component fuel. Some of the models tested showed good agreement with the DNS data and thus they can be used for the multi-component fuel combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gicquel, L.Y.M., Staffelbach, G., Poinsot, T.: Large eddy simulations of gaseous flames in gas turbine combustion chambers. Prog. En. Combust. Sc. 38, 782–817 (2012)

    Article  Google Scholar 

  2. Veynante, D., Vervisch, L.: Turbulent combustion modelling. Prog. En. Combust. Sc. 28, 193–266 (2002)

    Article  Google Scholar 

  3. Mantel, T., Borghi, R.: A new model of premixed wrinkled flame propagation based on a scalar dissipation equation. Combust. Flame 96, 443–457 (1994)

    Article  Google Scholar 

  4. Borghi, R., Dutoya, D.: On the scales of the fluctuations in turbulent combustion. Proc. Combust. Inst. 17, 235–244 (1979)

    Article  Google Scholar 

  5. Marble, F.E., Broadwell, J.E.: The coherent flame model for turbulent chemical reactions. Tech. Rep. TRW-9-PU Project Squid (1977)

  6. Candel, S.M., Maistret, E., Darabiha, N., Poinsot, T., Veynante, D., Lacas, F.: Experimental and numerical studies of turbulent ducted flames. Marb. Symp., 209–236 (1988)

  7. Pope, S.: The evolution of surfaces in turbulence. Int. J. Engng. Sci. 26, 445–469 (1988)

    Article  MathSciNet  Google Scholar 

  8. Bray, K.N.C., Champion, M., Libby, P.A.: The interaction between turbulence and chemistry in premixed turbulent flames. Turbulent Reactive Flows, Lecture notes in engineering, pp. 541-563. Springer Verlag

  9. Bray, K.N.C., Moss, J.B.: A unified statistical model of the premixed turbulent flame. Acta Astron. 4, 291–319 (1977)

    Article  Google Scholar 

  10. Borghi, R.: Turbulent premixed combustion: further discussions on scales of fluctuations. Combust. Flame 80, 304–312 (1990)

    Article  Google Scholar 

  11. Mura, A., Borghi, R.: Towards an extended scalar dissipation equation for turbulent premixed combustion. Combust. Flame 133, 193–196 (2003)

    Article  Google Scholar 

  12. Swaminathan, N., Grout, R.: Interaction of turbulence and scalar fields in premixed flames. Phys. Fluids 18, 045102 (2006)

    Article  MathSciNet  Google Scholar 

  13. Kolla, H., Rogerson, J.W., Chakraborty, N., Swaminathan, N.: Scalar dissipation rate modelling and its validation. Combust. Sci. Tech. 181, 518–535 (2009)

    Article  Google Scholar 

  14. Chakraborty, N., Swaminathan, N.: Influence of the Damköhler number on turbulence-scalar interaction in premixed flames I: Physical insight. Phys. Fluids 19, 045103 (2007)

    Article  Google Scholar 

  15. Chakraborty, N., Swaminathan, N.: Influence of the Damköhler number on turbulence-scalar interaction in premixed flames II: Model development. Phys. Fluids 19, 045104 (2007)

    Article  Google Scholar 

  16. Mura, A., Tsuboi, K., Hasegawa, T.: Modelling of the correlation between velocity and reactive scalar gradients in turbulent premixed flames based on DNS data. Combust. Th. Model. 12, 671–698 (2008)

    Article  Google Scholar 

  17. Angelberger, C., Veynante, D., Egolfopoulos, F.: LES of chemical and acoustic forcing of a premixed dump combustor. Flow Turb. Combust. 65, 205–222 (2000)

    Article  Google Scholar 

  18. Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion Part I: Non-dynamic formulation and initial tests. Combust. Flame 131, 159–180 (2002)

    Article  Google Scholar 

  19. Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion Part II: Dynamic formulation. Combust. Flame 131, 181–197 (2002)

    Article  Google Scholar 

  20. Fureby, C.: A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion. Proc. Combust. Inst. 30, 593–601 (2005)

    Article  Google Scholar 

  21. Grinstein, F.F., Fureby, C.: LES studies of the flow in a swirl gas combustor. Proc. Combust. Inst. 2, 1791–1798 (2005)

    Article  Google Scholar 

  22. Wang, G., Boileau, M., Veynante, D.: Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion. Combust. Flame 11, 2199–2213 (2011)

    Article  Google Scholar 

  23. Wang, G., Boileau, M., Veynante, D., Truffin, K.: Large eddy simulation of a growing turbulent premixed flame kernel using a dynamic flame surface density model. Combust. Flame 159, 2742–2754 (2012)

    Article  Google Scholar 

  24. Volpiani, P.S., Schmitt, T., Veynante, D.: A posteriori tests of a dynamic thickened flame model for large Eddy simulations of turbulent premixed combustion. Combust. Flame 174, 166–178 (2016)

    Article  Google Scholar 

  25. Mouriaux, S., Colin, O., Veynatne, D.: Adaptation of a dynamic wrinkling model to an engine configuration. Proc. Combust. Inst. 36, 3415–3422 (2017)

    Article  Google Scholar 

  26. Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  27. Gulder, O., Smallwood, G.J.: Inner cut-off scale of flame surface wrinkling in turbulent premixed flames. Combust. Flame 103, 107–114 (1995)

    Article  Google Scholar 

  28. Knikker, R., Veynante, D., Meneveau, C.: A dynamic flame surface density model for large Eddy simulation of turbulent premixed combustion. Phys. Fluids 16, 91–94 (2005)

    Article  Google Scholar 

  29. Chakraborty, N., Klein, M.: A priori direct numerical simulation assessment of algebraic flame surface density models for turbulent premixed flames in the context of large Eddy simulation. Phys. Fluids 20, 085108 (2008)

    Article  Google Scholar 

  30. Roberts, W.L., Driscoll, J.F., Drake, M.C., Goss, L.P.: Images of the quenching of a flame by a vortex-to quantify regimes of turbulent combustion. Combust. Flame 94, 58–69 (1993)

    Article  Google Scholar 

  31. North, G.L., Santavicca, D.A.: The fractal nature of turbulent premixed flames. Combust. Sc. Techn. 72, 215–232 (1990)

    Article  Google Scholar 

  32. Kerstein, A.: Fractal dimension of turbulent premixed flames. Comb. Sc. Techn. 60, 441–445 (1988)

    Article  Google Scholar 

  33. Katragadda, M., Chakraborty, N., Cant, R.S.: Effects of turbulent Reynolds number on the performance of algebraic flame surface density models for large Eddy simulation in the thin reaction zones regime: A direct numerical simulation analysis. J. Comb., 794671 (2012)

  34. Dunstan, T., Minamoto, Y., Swaminathan, N., Chakraborty, N.: Scalar dissipation rate modelling for large Eddy simulation of turbulent premixed flames. Proc. Combust. Inst. 34, 1193–1201 (2013)

    Article  Google Scholar 

  35. Gao, Y., Chakraborty, N., Swaminathan, N.: Algebraic closure of scalar dissipation rate for large eddy simulations of turbulent premixed combustion. Comb. Sc. Tech. 186, 1309–1337 (2014)

    Article  Google Scholar 

  36. Kolla, H., Rogerson, J.W., Chakraborty, N., Swaminathan, N.: Scalar dissipation rate modelling and its validation. Combust. Sci. Technol. 181, 518–535 (2009)

    Article  Google Scholar 

  37. Girimaji, S., Zhou, Y.: Analysis and modelling of sub-grid scalar mixing using numerical data. Phys. Fluids 8, 1224 (1996)

    Article  Google Scholar 

  38. Gao, Y., Chakraborty, N., Swaminathan, N.: Dynamic closure of scalar dissipation rate for large eddy simulations of turbulent premixed combustion: A direct numerical simulation analysis. Flow Turb. Combust. 95, 775–802 (2015)

    Article  Google Scholar 

  39. Langella, I., Swaminathan, N., Gao, Y., Chakraborty, N.: Assessment of dynamic closure for premixed combustion large Eddy simulation. Combust. Th. Model. 19, 628–656 (2015)

    Article  MathSciNet  Google Scholar 

  40. Langella, I., Swaminathan, N.: Unstrained and strained flamelets for LES of premixed combustion. Combust. Th. Model. 20, 410–440 (2016)

    Article  MathSciNet  Google Scholar 

  41. Langella, I., Swaminathan, N., Pitz, R.W.: Application of unstrained flamelet SGS closure for multi-regime premixed combustion. Combust. Flame. 173, 161–178 (2016)

    Article  Google Scholar 

  42. Gao, Y., Minamoto, Y., Tanahashi, M., Chakraborty, N.: A priori assessment of scalar dissipation rate closure for large Eddy simulations of turbulent premixed combustion using a detailed chemistry direct numerical simulation database. Combust. Sc. Tech. 188, 1398–1423 (2016)

    Article  Google Scholar 

  43. Minamoto, Y., Fukushima, N., Tanahashi, M., Miyauchi, T., Dunstan, T., Swaminathan, N.: Effect of flow-geometry on turbulence scalar interaction in premixed flames. Phys. Fluids 23, 125107 (2011)

    Article  Google Scholar 

  44. Das, A.K., Kumar, K., Sung, C.: Laminar flame speeds of moist syngas mixtures. Combust. Flame 158, 345–353 (2011)

    Article  Google Scholar 

  45. Nikolaou, Z.M., Chen, J.Y., Swaminathan, N.: A 5-step reduced mechanism for combus- tion of CO/H2/H2O/CH4/CO2 mixtures with low hydrogen/methane and high H2O content. Combust. Flame 160, 56–75 (2013)

    Article  Google Scholar 

  46. Singh, D., Takayuki, N., Saad, T., Qiao, L.: An experimental and kinetic study of syngas/air combustion at elevated temperatures and the effect of water addition. Fuel 94, 448–456 (2012)

    Article  Google Scholar 

  47. Nikolaou, Z.M., Swaminathan, N.: Direct numerical simulation of complex fuel combustion with detailed chemistry: Physical insight and mean reaction rate modelling. Comb. Sc. Tech. 187, 1759–1789 (2015)

    Article  Google Scholar 

  48. Cant, R.S.: SENGA2 User Guide, CUED/A–THERMO/TR67 September (2012)

  49. Nikolaou, Z.M., Swaminathan, N.: Evaluation of a reduced mechanism for turbulent premixed combustion. Combust. Flame 161, 3085–3099 (2014)

    Article  Google Scholar 

  50. Nikolaou, Z., Swaminathan, N.: A 5-step reduced mechanism for combustion of CO/H2/H2O/CH4/CO2 mixtures with low hydrogen/methane and high H 2O content. Comb. Flame 160, 56–75 (2013)

    Article  Google Scholar 

  51. Peters, N.: The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech. 384, 107–132 (1999)

    Article  Google Scholar 

  52. Nikolaou, Z., Swaminathan, N.: Heat release rate markers for premixed combustion. Comb. Flame 161, 3073–3084 (2014)

    Article  Google Scholar 

  53. Chatakonda, O., Hawkes, E.R., Aspden, A.J., Kerstein, A.R., Kolla, H., Chen, J.H.: On the fractal characteristics of low Damkohler number flames. Combust. Flame 120, 2422–2443 (2013)

    Article  Google Scholar 

  54. Butz, D., Gao, Y., Kempf, A.M., Chakraborty, N.: Large Eddy simulations of a turbulent premixed swirl flame using an algebraic scalar dissipation rate closure. Combust. Flame 162, 3180–3196 (2015)

    Article  Google Scholar 

  55. Cant, R.S., Pope, S.B., Bray, K.N.C.: Modelling of flamelet surface to volume ratio in turbulent premixed combustion. Proc. Combust. Inst. 23, 809–815 (1990)

    Article  Google Scholar 

  56. Hawkes, E.R., Cant, R.S.: A flame surface density approach to large eddy simulation of premixed turbulent combustion. Proc. Combust. Inst. 28, 51–58 (2000)

    Article  Google Scholar 

  57. Hawkes, E.R., Cant, R.S.: Implications of a flame surface density approach to large eddy simulation of premixed turbulent combustion. Combust. Flame 126, 1617–1629 (2001)

    Article  Google Scholar 

  58. Chakraborty, N., Cant, R.S.: Direct numerical simulation analysis of the flame surface density transport equation in the context of large Eddy simulation. Proc. Combust. Inst. 32, 1445–1453 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

ZMN and NS acknowledge the funding through the Low Carbon Energy University Alliance Programme supported by Tsinghua University, China. ZMN also likes to acknowledge the educational grant through the A.G. Leventis Foundation. This work made use of the facilities of HECToR, the UK’s national high-performance computing service, which is provided by UoE HPCx Ltd at the University of Edinburgh, Cray Inc and NAG Ltd, and funded by the Office of Science and Technology through EPSRC’s High End Computing Programme. ZMN also acknowledges PRACE for awarding us access to resource Beskow of PDC center for high-performance computing based in Sweden at KTH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. M. Nikolaou.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaou, Z.M., Swaminathan, N. Assessment of FSD and SDR Closures for Turbulent Flames of Alternative Fuels. Flow Turbulence Combust 101, 759–774 (2018). https://doi.org/10.1007/s10494-018-9903-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-018-9903-9

Keywords

Navigation