Skip to main content
Log in

Assessment of an Evaporation Model in CFD Simulations of a Free Liquid Pool Fire Using the Mass Transfer Number Approach

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

In the present paper an evaporation model is implemented and assessed in a Computational Fluid Dynamics (CFD) code named ISIS. First, the influence of the cell size and time step on the temperature field is studied via simulations with a prescribed fuel Mass Loss Rate (MLR). Then, the evaporation model is assessed using predictive simulations. The experimental scenario is a 30 cm-diameter heptane pool fire. The average fuel Mass Loss Rate Per Unit Area (MLRPUA) is predicted within 5.5% deviation from the experimental value. In addition, an analysis of the temperature and heat fluxes at the surface of the liquid, the mass transfer coefficient and the temperature inside the liquid is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The CFD code ISIS can be freely downloaded from the following website: https://gforge.irsn.fr/gf/project/isis/.

References

  1. Audouin, L., Rigollet, L., Prétrel, H., Le Saux, W., Rwekamp, M.F.: OECD PRISME project: Fires in confined and ventilated nuclear-type multi-compartments-Overview and main experimental results. Combust. Sci. Technol. 176, 945–958 (2004)

    Article  Google Scholar 

  2. Prétrel, H., Suard, S., Audouin, L.: Experimental and numerical study of low frequency oscillatory behaviour of a large-scale hydrocarbon pool fire in a mechanically ventilated compartment. Fire Saf. J. 63, 125–143 (2016)

    Google Scholar 

  3. Beji, T., Merci, B.: Blind Simulation of periodic pressure and burning rate instabilities in the event of a pool fire in a confined and mechanically ventilated compartment. Combust. Sci. Technol. 188, 504–515 (2016)

    Article  Google Scholar 

  4. Novozhilov, V., Koseki, H.: CFD Prediction of pool fire burning rates and flame feedback. Combust. Sci. Technol. 176, 1283–1307 (2004)

    Article  Google Scholar 

  5. Hostikka, S., McGrattan, K.B., Hamins, A.: Numerical modeling of pool fires using LES and the finite volume method for radiation. Fire Saf. J. 7, 383–394 (2003)

    Article  Google Scholar 

  6. Sikanen, T., Hostikka, S.: Modeling and simulation of liquid pool fires with in-depth radiation absorption and heat transfer. Fire Saf. J. 80, 95–109 (2016)

    Article  Google Scholar 

  7. Babrauskas, V.: Estimating large pool fire burning rates. Fire Technol. 19, 251–261 (1983)

    Article  Google Scholar 

  8. Klassen, M., Gore, J.P.: Structure and radiation properties of pool fires NIST-GCR-94-651 (1994)

  9. Hamins, S.J., Fisher Kashiwagi, T., Klassen, M., Gore, J.P.: Heat feedback to the fuel surface in pool fires. Combust. Sci. Technol. 97, 37–62 (1994)

    Article  Google Scholar 

  10. Prasad, K., Li, C., Kailasanath, K., Ndubizu, C., Ananth, R., Tatem, P.A.: Numerical modelling of methanol liquid pool fires. Combust. Theor. Model. 3, 743–768 (1999)

    Article  Google Scholar 

  11. Jacobs, A.F.G., Welgraven, D.: A simple model to calculate the Sherwood and Nusselt numbers for discs of various shapes. Int. J. Heat Mass Transf. 31, 119–227 (1988)

    Article  Google Scholar 

  12. Llorens, M., Miranda, L.A.: Ingeniería térmica, p. 153, Marcombo (2009)

  13. Nicoud, F., Ducros, F.: Subgrid scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 176, 1283–1307 (2001)

    MATH  Google Scholar 

  14. Ruiz, J., Kaiser, A.S., Zamora, B., Cutillas, C.G., Lucas, M.: CFD analysis of drift eliminators using RANS and LES turbulent models. Appl. Therm. Eng. 105, 979–987 (2016)

    Article  Google Scholar 

  15. Sadiki, A., Agrebi, M., Chrigui, A.S., Doost, R., Knappstein, F., Di Mare, J., Janicka, A., Massmeyer, D., Zabrodiec, D., Hess, R., Kneer, R.: Analyzing the effects of turbulence and multiphase treatments on oxy-coal combustion process predictions using LES and RANS. Chem. Eng. Sci. 166, 283–302 (2017)

    Article  Google Scholar 

  16. Hurley, M.J., Gottuk, D.T., Hall, J.R. Jr, Harada, K., Kuligowski, E.D., Puchovsky, M., Torero, J.L., Watts, J.M. Jr, Wieczorek, C.J.: SFPE handbook of fire protection engineering, p 311. Springer, Quincy (2002)

    Google Scholar 

  17. Magnussen, B.F., Hjertager, B.: On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Sixteenth symposium (International) on Combustion 16, 719–729 (1977)

    Article  Google Scholar 

  18. Sikanen, T., Hostikka, S.: Numerical simulations of liquid spreading and fires following an aircraft impact. Nucl. Eng. Des. 318, 147–162 (2017)

    Article  Google Scholar 

  19. Kassem, I.H., Khalid, M.S., Hossam, S.A., Mohsin, M.S., Mazlan, A.: Implementation of the eddy dissipation model of turbulent non-premixed combustion in openFOAM. Int. Commun. Heat Mass Transfer 38, 363–367 (2011)

    Article  Google Scholar 

  20. McGrattan, K.B., Hostikka, S., Floyd, J.E., Baum, H.R., Rehm, R.G., Mell, E., McDermott, R.: FDS technical reference guide. vol. 1: Mathematical model, FDS Version 5.4. NIST, p. 63 (2009)

  21. Minkowycz, W.J., Sparrow, E.M.: Advances in numerical heat transfer, pp. 109–119. Taylor and Francis, New York (2002)

    Google Scholar 

  22. Chai, J.C., Hsu, P.-f., Lam, Y.C.: Three-dimensional transient radiative transfer modeling using the finite-volume method. J. Quant. Spectrosc. Radiat. Transf. 86, 299–313 (2004)

    Article  Google Scholar 

  23. Coelho, P.J.: Advances in the discrete ordinates and finite volume methods for the solution of radiative heat transfer problems in participating media. J. Quant. Spectrosc. Radiat. Transf. 145, 121–146 (2014)

    Article  Google Scholar 

  24. Novozhilov, V.: Computational fluid dynamics modelling of compartment fires. Prog. Energy Combust. Sci. 27, 611–666 (2001)

    Article  Google Scholar 

  25. Maragkos, G., Beji, T., Merci, B: Advances in modelling in CFD simulations of turbulent gaseous pool fires. Combust. Flame 181, 22–38 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Jose Felipe Perez Segovia is a PhD student funded by Bel V. The authors are grateful for the technical support provided by S. Suard, L. Audouin, H. Prétrel, G. Boyer, M. Mense, and F. Babik from IRSN.

Funding

This study was funded by Bel V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Felipe Perez Segovia.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez Segovia, J.F., Beji, T. & Merci, B. Assessment of an Evaporation Model in CFD Simulations of a Free Liquid Pool Fire Using the Mass Transfer Number Approach. Flow Turbulence Combust 101, 1059–1072 (2018). https://doi.org/10.1007/s10494-018-9943-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-018-9943-1

Keywords

Navigation