Skip to main content

Advertisement

Log in

Overexpression of the cis/trans isomerase PTPA triggers caspase 3-dependent apoptosis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

PTPA, which possesses a peptidyl prolyl isomerase activity, was initially isolated as a protein that stimulates the weak phosphotyrosyl phosphatase activity of the Ser/Thr phosphatase PP2A. Here we show that transient overexpression of PTPA leads to cell death in a time-dependent manner in mammalian cells. PTPA-overproducing cells manifest hallmarks of apoptosis including chromatin condensation, membrane blebbing, positive staining with annexin V, dephosphorylation of Bad, and caspase-3 cleavage. Incubation of cells with the PP2A inhibitor okadaic acid does not prevent either dephosphorylation of Bad or PTPA-induced apoptosis, indicating that PTPA is unlikely to mediate its proapoptotic effect via PP2A. Moreover, we find no evidence for the involvement of either p53 or MAP kinases. Our data reveal a potential novel role for PTPA in the apoptotic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. S1
Fig. S2

Similar content being viewed by others

References

  1. Mumby MC, Walter G (1993) Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth. Physiol Rev 73:673–699

    PubMed  CAS  Google Scholar 

  2. Foulkes JG, Erikson E, Erikson RL (1983) Separation of multiple phosphotyrosyl-and phosphoseryl-protein phosphatases from chicken brain. J Biol Chem 258:431–438

    PubMed  CAS  Google Scholar 

  3. Hermann J, Cayla X, Dumortier K, Goris J, Ozon R, Merlevede W (1988) Modulation of the substrate specificity of the polycation-stimulated protein phosphatase from Xenopus laevis oocytes. Eur J Biochem 173:17–25

    Article  PubMed  CAS  Google Scholar 

  4. Goris J, Pallen CJ, Parker PJ, Hermann J, Waterfield MD, Merlevede W (1988) Conversion of a phosphoseryl/threonyl phosphatase into a phosphotyrosyl phosphatase. Biochem J 256:1029–1034

    PubMed  CAS  Google Scholar 

  5. Jessus C, Goris J, Cayla X, et al (1989) Tubulin and MAP2 regulate the PCSL phosphatase activity. A possible new role for microtubular proteins. Eur J Biochem 180:15–22

    Article  PubMed  CAS  Google Scholar 

  6. Cayla X, Goris J, Hermann J, Hendrix P, Ozon R, Merlevede W (1990) Isolation and characterization of a tyrosyl phosphatase activator from rabbit skeletal muscle and Xenopus laevis oocytes. Biochemistry 29:658–667

    Article  PubMed  CAS  Google Scholar 

  7. Van Hoof C, Aly MS, Garcia A, et al (1995) Structure and chromosomal localization of the human gene of the phosphotyrosyl phosphatase activator (PTPA) of protein phosphatase 2A. Genomics 28:261–272

    Article  PubMed  CAS  Google Scholar 

  8. Cayla X, Van Hoof C, Bosch M, et al (1994) Molecular cloning, expression, and characterization of PTPA, a protein that activates the tyrosyl phosphatase activity of protein phosphatase 2A. J Biol Chem 269:15668–15675

    PubMed  CAS  Google Scholar 

  9. Jordens J, Janssens V, Longin S, et al (2006) The Protein Phosphatase 2A Phosphatase Activator Is a Novel Peptidyl-Prolyl cis/trans-Isomerase. J Biol Chem 281:6349–6357

    Article  PubMed  CAS  Google Scholar 

  10. Fellner T, Lackner DH, Hombauer H, et al (2003) A novel and essential mechanism determining specificity and activity of protein phosphatase 2A (PP2A) in vivo. Genes Dev 17:2138–2150

    Article  PubMed  CAS  Google Scholar 

  11. Kruger NJ (1994) The Bradford method for protein quantitation. Methods Mol Biol 32:9–15

    PubMed  CAS  Google Scholar 

  12. Patterson MK Jr (1979) Measurement of growth and viability of cells in culture. Methods Enzymol 58:141–152

    Article  PubMed  Google Scholar 

  13. Ray RM, Bhattacharya S, Johnson LR (2005) Protein phosphatase 2A regulates apoptosis in intestinal epithelial cells. J Biol Chem 280:31091–31100

    Article  PubMed  CAS  Google Scholar 

  14. Narayanan S, Stewart GC, Chengappa MM, et al (2002) Fusobacterium necrophorum leukotoxin induces activation and apoptosis of bovine leukocytes. Infect Immun 70:4609–4620

    Article  PubMed  CAS  Google Scholar 

  15. Ziegler U, Groscurth P (2004) Morphological features of cell death. News Physiol Sci 19:124–128

    PubMed  CAS  Google Scholar 

  16. Steller H (1995) Mechanisms and genes of cellular suicide. Science 267:1445–1449

    Article  PubMed  CAS  Google Scholar 

  17. Arends MJ, Morris RG, Wyllie AH (1990) Apoptosis. The role of the endonuclease. Am J Pathol 136:593–608

    PubMed  CAS  Google Scholar 

  18. Bhattacharyya N, Pechhold K, Shahjee H, et al (2006) Non-secreted insulin-like growth factor binding protein-3 (IGFBP-3) can induce apoptosis in human prostate cancer cells by IGF-independent mechanisms without being concentrated in the nucleus. J Biol Chem

  19. Gorman AM, Bonfoco E, Zhivotovsky B, Orrenius S, Ceccatelli S (1999) Cytochrome c release and caspase-3 activation during colchicine-induced apoptosis of cerebellar granule cells. Eur J Neurosci 11:1067–1072

    Article  PubMed  CAS  Google Scholar 

  20. Henshall DC, Araki T, Schindler CK, et al (2002) Activation of Bcl-2-associated death protein and counter-response of Akt within cell populations during seizure-induced neuronal death. J Neurosci 22:8458–8465

    PubMed  CAS  Google Scholar 

  21. Cereghetti GM, Scorrano L (2006) The many shapes of mitochondrial death. Oncogene 25:4717–4724

    Article  PubMed  CAS  Google Scholar 

  22. Chiang CW, Kanies C, Kim KW, et al (2003) Protein phosphatase 2A dephosphorylation of phosphoserine 112 plays the gatekeeper role for BAD-mediated apoptosis. Mol Cell Biol 23:6350–6362

    Article  PubMed  CAS  Google Scholar 

  23. Chatfield K, Eastman A (2004) Inhibitors of protein phosphatases 1 and 2A differentially prevent intrinsic and extrinsic apoptosis pathways. Biochem Biophys Res Commun 323:1313–1320

    Article  PubMed  CAS  Google Scholar 

  24. Shuai K, Liu B (2005) Regulation of gene-activation pathways by PIAS proteins in the immune system. Nat Rev Immunol 5:593–605

    Article  PubMed  CAS  Google Scholar 

  25. Tokino T, Nakamura Y (2000) The role of p53-target genes in human cancer. Crit Rev Oncol Hematol 33:1–6

    PubMed  CAS  Google Scholar 

  26. Kondoh K, Torii S, Nishida E (2005) Control of MAP kinase signaling to the nucleus. Chromosoma 114:86–91

    Article  PubMed  CAS  Google Scholar 

  27. Wada T, Penninger JM (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23:2838–2849

    Article  PubMed  CAS  Google Scholar 

  28. Magnusdottir A, Stenmark P, Flodin S, et al (2006) The crystal structure of a human PP2A phosphatase activator reveals a novel fold and highly conserved cleft implicated in protein-protein interactions. J Biol Chem

  29. Leulliot N, Vicentini G, Jordens J, et al (2006) Crystal structure of the PP2A phosphatase activator: implications for its PP2A-specific PPIase activity. Mol Cell 23:413–424

    Article  PubMed  CAS  Google Scholar 

  30. Ayllon V, Martinez AC, Garcia A, Cayla X, Rebollo A (2000) Protein phosphatase 1alpha is a Ras-activated Bad phosphatase that regulates interleukin-2 deprivation-induced apoptosis. Embo J 19:2237–2246

    Article  PubMed  CAS  Google Scholar 

  31. Chiang CW, Harris G, Ellig C, et al (2001) Protein phosphatase 2A activates the proapoptotic function of BAD in interleukin- 3-dependent lymphoid cells by a mechanism requiring 14-3-3 dissociation. Blood 97:1289–1297

    Article  PubMed  CAS  Google Scholar 

  32. Wang HG, Pathan N, Ethell IM, et al (1999) Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284:339–343

    Article  PubMed  CAS  Google Scholar 

  33. Tong QS, Zheng LD, Wang L, Liu J, Qian W (2004) BAK overexpression mediates p53-independent apoptosis inducing effects on human gastric cancer cells. BMC Cancer 4:33

    Article  PubMed  CAS  Google Scholar 

  34. Yao J, Duan L, Fan M, Yuan J, Wu X (2006) Overexpression of BLCAP induces S phase arrest and apoptosis independent of p53 and NF-kappaB in human tongue carcinoma: BLCAP overexpression induces S phase arrest and apoptosis. Mol Cell Biochem

  35. Corazzari M, Lovat PE, Oliverio S, et al (2005) Fenretinide: a p53-independent way to kill cancer cells. Biochem Biophys Res Commun 331:810–815

    Article  PubMed  CAS  Google Scholar 

  36. Douville J, David J, Lemieux KM, Gaudreau L, Ramotar D (2006) The Saccharomyces cerevisiae phosphatase activator RRD1 is required to modulate gene expression in response to rapamycin exposure. Genetics 172:1369–1372

    Article  PubMed  CAS  Google Scholar 

  37. Heon Seo K, Ko HM, Kim HA, et al (2006) Platelet-activating factor induces up-regulation of antiapoptotic factors in a melanoma cell line through nuclear factor-kappaB activation. Cancer Res 66:4681–4686

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grant MOP-13152 to D.R. from the Canadian Institutes of Health Research. We thank Xiaoming Yang and Nathalie Henley for technical assistance, and Nathalie Jouvet for providing her unpublished data on siRNA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dindial Ramotar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azam, S., Drobetsky, E. & Ramotar, D. Overexpression of the cis/trans isomerase PTPA triggers caspase 3-dependent apoptosis. Apoptosis 12, 1243–1255 (2007). https://doi.org/10.1007/s10495-006-0050-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-0050-8

Keywords

Navigation