Skip to main content
Log in

The apoptotic transcriptome of the human MII oocyte: characterization and age-related changes

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Fully competent oocytes represent the final outcome of a highly selective process. The decline of oocyte competence with ageing, coupled to quantitative decrease of ovarian follicles has been well established; on the contrary, its molecular bases are still poorly understood. Through quantitative high throughput PCR, we investigated the role of apoptotic machinery (AM) in this process. To this aim, we determined AM transcriptome in mature MII oocyte pools from women aged more than 38 years (cohort A), and compared to women aged up to 35 years (cohort B). Subsequently, 10 representative AM genes were selected and analyzed in 33 single oocytes (15 from cohort A and 18 from cohort B). These investigations led us to identify: (1) the significant upregulation of proapoptotic genes such us CD40, TNFRSF10A, TNFRSF21 and the downregulation of antiapoptotic genes such as BCL2 and CFLAR in cohort A respect to cohort B; (2) AM transcripts that have not previously been reported in human oocytes (BAG3, CD40, CFLAR, TNFRSF21, TRAF2, TRAF3). Our results demonstrated that during maturation the oocytes from older women selectively accumulate mRNAs that are able to trigger the extrinsic apoptotic pathway. These data contribute to clarify the molecular mechanisms of AM involvement in the natural selection strategy of removing low quality oocytes and preventing unfit or poorly fit embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tilly JL (2001) Commuting the death sentence: how oocytes strive to survive. Nat Rev Mol Cell Biol 2:838–848

    Article  PubMed  CAS  Google Scholar 

  2. Hussein MR (2005) Apoptosis in the ovary: molecular mechanisms. Hum Reprod Update 11:162–177

    Article  PubMed  Google Scholar 

  3. Krysko DV, Diez-Fraile A, Criel G, Svistunov AA, Vandenabeele P, D’Herde K (2008) Life and death of female gametes during oogenesis and folliculogenesis. Apoptosis 13:1065–1087

    Article  PubMed  Google Scholar 

  4. Kim MR, Tilly JL (2004) Current concepts in Bcl-2 family member regulation of female germ cell development and survival. Biochim Biophys Acta 1644:205–210

    Article  PubMed  CAS  Google Scholar 

  5. Boumela I, Assou S, Aouacheria A, Haouzi D, Dechaud H, De Vos J et al (2011) Involvement of Bcl-2 family members in the regulation of human oocyte and early embryo survival and death: gene expression and beyond. Reproduction 141:549–561

    Article  PubMed  CAS  Google Scholar 

  6. Broekmans FJ, Knauff EA, te Velde ER, Macklon NS, Fauser BC (2007) Female reproductive ageing: current knowledge and future trends. Trends Endocrinol Metabol 18:58–65

    Article  CAS  Google Scholar 

  7. Jones KT (2008) Meiosis in oocytes: predisposition to aneuploidy and its increased incidence with age. Hum Reprod Update 14:143–158

    Article  PubMed  CAS  Google Scholar 

  8. Fissore RA, Kurokawa M, Knott J, Zhang M, Smyth J (2002) Mechanisms underlying oocyte activation and postovulatory ageing. Reproduction 124:745–754

    Article  PubMed  CAS  Google Scholar 

  9. Miao YL, Kikuchi K, Sun QY, Schatten H (2009) Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Hum Reprod Update 15:573–585

    Article  PubMed  Google Scholar 

  10. Morita Y, Tilly JL (1999) Oocyte apoptosis: like sand through an hourglass. Dev Biol 213:1–17. doi:10.1006/dbio.1999.9344

    Article  PubMed  CAS  Google Scholar 

  11. Jurisicova A, Acton BM (2004) Deadly decisions: the role of genes regulating programmed cell death in human preimplantation embryo development. Reproduction 128:281–291

    Article  PubMed  CAS  Google Scholar 

  12. Haouzi D, Hamamah S (2009) Pertinence of apoptosis markers for the improvement of in vitro fertilization (IVF). Curr Med Chem 16:1905–1916

    Article  PubMed  CAS  Google Scholar 

  13. Song JL, Wessel GM (2005) How to make an egg: transcriptional regulation in oocytes. Differentiation 73:1–17

    Article  PubMed  CAS  Google Scholar 

  14. Pangas SA, Rajkovic A (2006) Transcriptional regulation of early oogenesis: in search of masters. Hum Reprod Update 12:65–76

    Article  PubMed  CAS  Google Scholar 

  15. Gosden RG (2002) Oogenesis as a foundation for embryogenesis. Mol Cell Endocrinol 186:149–153

    Article  PubMed  CAS  Google Scholar 

  16. Conti M (2011) When an egg is not an egg: compromised maternal mRNA storage and stabilization. Biol Reprod 85:429–430

    Article  PubMed  CAS  Google Scholar 

  17. Hamatani T, Falco G, Carter MG, Akutsu H, Stagg CA, Sharov AA et al (2004) Age-associated alteration of gene expression patterns in mouse oocytes. Hum Mol Genet 13:2263–2278

    Article  PubMed  CAS  Google Scholar 

  18. Leoni GG, Bebbere D, Succu S, Berlinguer F, Mossa F, Galioto M et al (2007) Relations between relative mRNA abundance and developmental competence of ovine oocytes. Mol Reprod Dev 74:249–257

    Article  PubMed  CAS  Google Scholar 

  19. Pan H, Ma P, Zhu W, Schultz RM (2008) Age-associated increase in aneuploidy and changes in gene expression in mouse eggs. Dev Biol 316:397–407. doi:10.1016/j.ydbio.2008.01.048

    Article  PubMed  CAS  Google Scholar 

  20. Grøndahl ML, Yding Andersen C, Bogstad J, Nielsen FC, Meinertz H, Borup R (2010) Gene expression profiles of single human mature oocytes in relation to age. Hum Reprod 25:957–968

    Article  PubMed  Google Scholar 

  21. Assou S, Anahory T, Pantesco V, Le Carrour T, Pellestor F, Klein B et al (2006) The human cumulus-oocyte complex gene-expression profile. Hum Reprod 21:1705–1719

    Article  PubMed  CAS  Google Scholar 

  22. Di Pietro C, Ragusa M, Barbagallo D, Duro LR, Guglielmino MR, Majorana A et al (2009) The apoptotic machinery as a biological complex system: analysis of its omics and evolution, identification of candidate genes for fourteen major types of cancer, and experimental validation in CML and neuroblastoma. BMC Med Genomics 2:1–35

    Article  Google Scholar 

  23. Høst E, Gabrielsen A, Lindenberg S, Smidt-Jensen S (2002) Apoptosis in human cumulus cells in relation to zona pellucida thickness variation, maturation stage, and cleavage of the corresponding oocyte after intracytoplasmic sperm injection. Fertil Steril 77:511–515

    Article  PubMed  Google Scholar 

  24. Di Pietro C, Vento M, Guglielmino MR, Borzì P, Santonocito M, Ragusa M et al (2010) Molecular profiling of human oocytes after vitrification strongly suggests that they are biologically comparable with freshly isolated gametes. Fertil Steril 94:2804–2807

    Article  PubMed  Google Scholar 

  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  26. Mamo S, Gal AB, Bodo S, Dinnyes A (2007) Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro. BMC Dev Biol 7:14

    Article  PubMed  Google Scholar 

  27. Joy MP, Brock A, Ingber DE, Huang S (2005) High-betweenness proteins in the yeast protein interaction network. J Biomed Biotechnol 2005:96–103

    Article  PubMed  Google Scholar 

  28. Brandes U, Erlebach T (2005) Network analysis. LNCS 3418. Springer, Berlin

  29. Hunt PA, Hassold TJ (2008) Human female meiosis: what makes a good egg go bad? Trends Genet 24:86–93

    Article  PubMed  CAS  Google Scholar 

  30. Boumela I, Guillemin Y, Guérin JF, Aouacheria A (2009) The Bcl-2 family pathway in gametes and preimplantation embryos. Gynecol Obstet Fertil 37:720–732

    Article  PubMed  CAS  Google Scholar 

  31. Guillemin Y, Lalle P, Gillet G, Guerin JF, Hamamah S, Aouacheria A (2009) Oocytes and early embryos selectively express the survival factor BCL2L10. J Mol Med 87:923–940

    Article  PubMed  CAS  Google Scholar 

  32. Guglielmino MR, Santonocito M, Vento M, Ragusa M, Barbagallo D, Borzì P et al (2011) TAp73 is downregulated in oocytes from women of advanced reproductive age. Cell Cycle 10:3253–3256

    Article  PubMed  CAS  Google Scholar 

  33. Markholt S, Grøndahl ML, Ernst EH, Andersen CY, Ernst E, Lykke-Hartmann K (2012) Global gene analysis of oocytes from early stages in human folliculogenesis shows high expression of novel genes in reproduction. Mol Hum Reprod 18:96–110

    Article  PubMed  CAS  Google Scholar 

  34. Dickens LS, Powley IR, Hughes MA, MacFarlane M (2012) The ‘complexities’ of life and death: death receptor signalling platforms. Exp Cell Res 318:1269–1277

    Article  PubMed  CAS  Google Scholar 

  35. Matsuda F, Inoue N, Goto Y, Maeda A, Cheng Y, Sakamaki K et al (2008) cFLIP regulates death receptor-mediated apoptosis in an ovarian granulosa cell line by inhibiting procaspase-8 cleavage. J Reprod Dev 54:314–320

    Article  PubMed  CAS  Google Scholar 

  36. Bagnoli M, Canevari S, Mezzanzanica D (2010) Cellular FLICE-inhibitory protein (c-FLIP) signalling: a key regulator of receptor-mediated apoptosis in physiologic context and in cancer. Int J Biochem Cell Biol 42:210–213

    Article  PubMed  CAS  Google Scholar 

  37. He X, Zhang J (2006) Why do hubs tend to be essential in protein networks? PLoS Genet 2:e88

    Article  PubMed  Google Scholar 

  38. Steuerwald NM, Bermúdez MG, Wells D, Munné S, Cohen J (2007) Maternal age-related differential global expression profiles observed in human oocytes. Reprod Biomed Online 14:700–708

    Article  PubMed  CAS  Google Scholar 

  39. Eichenlaub-Ritter U, Vogt E, Yin H, Gosden (2004) Spindles, mitochondria and redox potential in ageing oocytes. Reprod Biomed Online 8:45–58

    Article  PubMed  CAS  Google Scholar 

  40. Fragouli E, Bianchi V, Patrizio P, Obradors A, Huang Z, Borini A et al (2010) Transcriptomic profiling of human oocytes: association of meiotic aneuploidy and altered oocyte gene expression. Mol Hum Reprod 16:570–582

    Article  PubMed  CAS  Google Scholar 

  41. Andux S, Ellis RE (2008) Apoptosis maintains oocyte quality in aging Caenorhabditis elegans females. PLoS Genet 4:e1000295

    Article  PubMed  Google Scholar 

  42. Kujjo LL, Laine T, Pereira RJ, Kagawa W, Kurumizaka H, Yokoyama S et al (2010) Enhancing survival of mouse oocytes following chemotherapy or aging by targeting Bax and Rad51. PLoS ONE 5:e9204

    Article  PubMed  Google Scholar 

  43. Tilly JL, Tilly KI, Perez GI (1997) The genes of cell death and cellular susceptibility to apoptosis in the ovary: a hypothesis. Cell Death Differ 4:180–187

    Article  PubMed  CAS  Google Scholar 

  44. Fujino Y, Ozaki K, Yamamasu S, Ito F, Matsuoka I, Hayashi E et al (1996) DNA fragmentation of oocytes in aged mice. Hum Reprod 11:1480–1483

    Article  PubMed  CAS  Google Scholar 

  45. Tatone C, Carbone MC, Gallo R, Delle Monache S, Di Cola M, Alesse E et al (2006) Age-associated changes in mouse oocytes during postovulatory in vitro culture: possible role for meiotic kinases and survival factor BCL2. Biol Reprod 74:395–402

    Article  PubMed  CAS  Google Scholar 

  46. Papandile A, Tyas D, O’Malley DM, Warner CM (2004) Analysis of caspase-3, caspase-8 and caspase-9 enzymatic activities in mouse oocytes and zygotes. Zygote 12:57–64

    Article  PubMed  CAS  Google Scholar 

  47. Check JH, Cohen R (2010) Evidence that oocyte quality in younger women with diminished oocyte reserve is superior to those of women of advanced reproductive age. Med Hypotheses 74:264–267

    Article  PubMed  CAS  Google Scholar 

  48. Tatone C, Amicarelli F, Carbone MC, Monteleone P, Caserta D, Marci R et al (2008) Cellular and molecular aspects of ovarian follicle ageing. Hum Reprod Update 14:131–142

    Article  PubMed  CAS  Google Scholar 

  49. Han D, Ybanez MD, Ahmadi S, Yeh K, Kaplowitz N (2009) Redox regulation of tumor necrosis factor signaling. Antioxid Redox Signal 11:2245–2263

    Article  PubMed  CAS  Google Scholar 

  50. Gupta SC, Reuter S, Phromnoi K, Park B, Hema PS, Nair M et al (2011) Nimbolide sensitizes human colon cancer cells to TRAIL through reactive oxygen species- and ERK-dependent up-regulation of death receptors, p53, and Bax. J Biol Chem 286:1134–1146

    Article  PubMed  CAS  Google Scholar 

  51. Azad N, Iyer A, Vallyathan V, Wang L, Castranova V, Stehlik C et al (2010) Role of oxidative/nitrosative stress-mediated Bcl-2 regulation in apoptosis and malignant transformation. Ann N Y Acad Sci 1203:1–6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was financed with funds from Ministero dell’Università e della Ricerca Scientifica e Tecnologica to CDP (in particular, PRA 2007: Marcatori molecolari correlati alla qualità follicolare ed ovocitaria. PRA 2008: Stemness genes negli ovociti umani). We acknowledge the assignment to Dr D. Barbagallo of a fellowship by the Facoltà di Medicina e Chirurgia, Università di Catania to work on this project (Title: Marcatori molecolari correlati alla qualità follicolare ed ovocitaria ed ai meccanismi di impianto).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cinzia Di Pietro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santonocito, M., Guglielmino, M.R., Vento, M. et al. The apoptotic transcriptome of the human MII oocyte: characterization and age-related changes. Apoptosis 18, 201–211 (2013). https://doi.org/10.1007/s10495-012-0783-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-012-0783-5

Keywords

Navigation