Skip to main content

Advertisement

Log in

Autophagy induced by p53-reactivating molecules protects pancreatic cancer cells from apoptosis

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

TP53 mutations compromising p53 transcriptional function occur in more than 50 % of human cancers, including pancreatic adenocarcinoma, and render cancer cells more resistant to conventional therapy. In the last few years, many efforts have been addressed to identify p53-reactivating molecules able to restore the wild-type transcriptionally competent conformation of the mutated proteins. Here, we show that two of these compounds, CP-31398 and RITA, induce cell growth inhibition, apoptosis, and autophagy by activating p53/DNA binding and p53 phosphorylation (Ser15), without affecting the total p53 amount. These effects occur in both wild-type and mutant p53 pancreatic adenocarcinoma cell lines, whereas they are much less pronounced in normal human primary fibroblasts. Furthermore, CP-31398 and RITA regulate the axis SESN1-2/AMPK/mTOR by inducing AMPK phosphorylation on Thr172, which has a crucial role in the autophagic response. The protective role of autophagy in cell growth inhibition by CP-31398 and RITA is supported by the finding that the AMPK inhibitor compound C or the autophagy inhibitors chloroquine or 3-methyladenine sensitize both pancreatic adenocarcinoma cell lines to the apoptotic response induced by p53-reactivating molecules. Our results demonstrate for the first time a survival role for autophagy induced by p53-reactivating molecules, supporting the development of an anti-cancer therapy based on autophagy inhibition associated to p53 activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Toledo F, Wahl GM (2006) Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6:909–923

    Article  PubMed  CAS  Google Scholar 

  2. Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604

    Article  PubMed  CAS  Google Scholar 

  3. Moore PS, Beghelli S, Zamboni G, Scarpa A (2003) Genetic abnormalities in pancreatic cancer. Mol Cancer 2:7

    Article  PubMed  Google Scholar 

  4. Nicholls CD, McLure KG, Shields MA, Lee PW (2002) Biogenesis of p53 involves cotranslational dimerization of monomers and posttranslational dimerization of dimers. Implications on the dominant negative effect. J Biol Chem 277:12937–12945

    Article  PubMed  CAS  Google Scholar 

  5. Bullock AN, Fersht AR (2001) Rescuing the function of mutant p53. Nat Rev Cancer 1:68–76

    Article  PubMed  CAS  Google Scholar 

  6. Lane DP, Hupp TR (2003) Drug discovery and p53. Drug Discov Today 8:347–355

    Article  PubMed  CAS  Google Scholar 

  7. Martins CP, Brown-Swigart L, Evan GI (2006) Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127:1323–1334

    Article  PubMed  CAS  Google Scholar 

  8. Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, Newman J, Reczek EE, Weissleder R, Jacks T (2007) Restoration of p53 function leads to tumour regression in vivo. Nature 445:661–665

    Article  PubMed  CAS  Google Scholar 

  9. Wiman KG (2010) Pharmacological reactivation of mutant p53: from protein structure to the cancer patient. Oncogene 29:4245–4252

    Article  PubMed  CAS  Google Scholar 

  10. Bykov VJ, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, Chumakov P, Bergman J, Wiman KG, Selivanova G (2002) Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 8:282–288

    Article  PubMed  CAS  Google Scholar 

  11. Demma MJ, Wong S, Maxwell E, Dasmahapatra B (2004) CP-31398 restores DNA-binding activity to mutant p53 in vitro but does not affect p53 homologs p63 and p73. J Biol Chem 279:45887–45896

    Article  PubMed  CAS  Google Scholar 

  12. Roh JL, Kang SK, Minn I, Califano JA, Sidransky D, Koch WM (2011) p53-reactivating small molecules induce apoptosis and enhance chemotherapeutic cytotoxicity in head and neck squamous cell carcinoma. Oral Oncol 47:8–15

    Article  PubMed  CAS  Google Scholar 

  13. Xu J, Timares L, Heilpern C, Weng Z, Li C, Xu H, Pressey JG, Elmets CA, Kopelovich L, Athar M (2010) Targeting wild-type and mutant p53 with small molecule CP-31398 blocks the growth of rhabdomyosarcoma by inducing reactive oxygen species-dependent apoptosis. Cancer Res 70:6566–6576

    Article  PubMed  CAS  Google Scholar 

  14. Mizushima N (2009) Physiological functions of autophagy. Curr Top Microbiol Immunol 335:71–84

    Article  PubMed  CAS  Google Scholar 

  15. Amelio I, Melino G, Knight RA (2011) Cell death pathology: cross-talk with autophagy and its clinical implications. Biochem Biophys Res Commun 414:277–281

    Article  PubMed  CAS  Google Scholar 

  16. Donadelli M, Dando I, Zaniboni T, Costanzo C, Dalla Pozza E, Scupoli MT, Scarpa A, Zappavigna S, Marra M, Abbruzzese A, Bifulco M, Caraglia M, Palmieri M (2011) Gemcitabine/cannabinoid combination triggers autophagy in pancreatic cancer cells through a ROS-mediated mechanism. Cell Death Dis 2:e152

    Article  PubMed  CAS  Google Scholar 

  17. Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, Noda T, Ohsumi Y (2000) A ubiquitin-like system mediates protein lipidation. Nature 408:488–492

    Article  PubMed  CAS  Google Scholar 

  18. Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T (2004) LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117:2805–2812

    Article  PubMed  CAS  Google Scholar 

  19. Feng Z (2010) p53 regulation of the IGF-1/AKT/mTOR pathways and the endosomal compartment. Cold Spring Harb Perspect Biol 2:a001057

    Article  PubMed  Google Scholar 

  20. Budanov AV, Karin M (2008) p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134:451–460

    Article  PubMed  CAS  Google Scholar 

  21. Sanli T, Linher-Melville K, Tsakiridis T, Singh G (2012) Sestrin2 modulates AMPK subunit expression and its response to ionizing radiation in breast cancer cells. PLoS ONE 7:e32035

    Article  PubMed  CAS  Google Scholar 

  22. Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM (2006) DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126:121–134

    Article  PubMed  CAS  Google Scholar 

  23. Moore PS, Sipos B, Orlandini S, Sorio C, Real FX, Lemoine NR, Gress T, Bassi C, Kloppel G, Kalthoff H, Ungefroren H, Lohr M, Scarpa A (2001) Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4. Virchows Arch 439:798–802

    PubMed  CAS  Google Scholar 

  24. Osborn L, Kunkel S, Nabel GJ (1989) Tumor necrosis factor alpha and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kappa B. Proc Natl Acad Sci USA 86:2336–2340

    Article  PubMed  CAS  Google Scholar 

  25. Barton CM, Staddon SL, Hughes CM, Hall PA, O’Sullivan C, Kloppel G, Theis B, Russell RC, Neoptolemos J, Williamson RC et al (1991) Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer. Br J Cancer 64:1076–1082

    Article  PubMed  CAS  Google Scholar 

  26. Vazquez A, Bond EE, Levine AJ, Bond GL (2008) The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev Drug Discov 7:979–987

    Article  PubMed  CAS  Google Scholar 

  27. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu EA (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848

    Article  PubMed  CAS  Google Scholar 

  28. Vu BT, Vassilev L (2011) Small-molecule inhibitors of the p53–MDM2 interaction. Curr Top Microbiol Immunol 348:151–172

    Article  PubMed  CAS  Google Scholar 

  29. Haupt S, Haupt Y (2004) Manipulation of the tumor suppressor p53 for potentiating cancer therapy. Semin Cancer Biol 14:244–252

    Article  PubMed  CAS  Google Scholar 

  30. Selivanova G, Wiman KG (2007) Reactivation of mutant p53: molecular mechanisms and therapeutic potential. Oncogene 26:2243–2254

    Article  PubMed  CAS  Google Scholar 

  31. Wang W, El-Deiry WS (2008) Restoration of p53 to limit tumor growth. Curr Opin Oncol 20:90–96

    Article  PubMed  Google Scholar 

  32. Bykov VJ, Selivanova G, Wiman KG (2003) Small molecules that reactivate mutant p53. Eur J Cancer 39:1828–1834

    Article  PubMed  CAS  Google Scholar 

  33. Zhao CY, Grinkevich VV, Nikulenkov F, Bao W, Selivanova G (2010) Rescue of the apoptotic-inducing function of mutant p53 by small molecule RITA. Cell Cycle 9:1847–1855

    Article  PubMed  CAS  Google Scholar 

  34. Azmi AS, Philip PA, Aboukameel A, Wang Z, Banerjee S, Zafar SF, Goustin AS, Almhanna K, Yang D, Sarkar FH, Mohammad RM (2010) Reactivation of p53 by novel MDM2 inhibitors: implications for pancreatic cancer therapy. Curr Cancer Drug Targets 10:319–331

    Article  PubMed  CAS  Google Scholar 

  35. Tasdemir E, Chiara Maiuri M, Morselli E, Criollo A, D’Amelio M, Djavaheri-Mergny M, Cecconi F, Tavernarakis N, Kroemer G (2008) A dual role of p53 in the control of autophagy. Autophagy 4:810–814

    PubMed  CAS  Google Scholar 

  36. Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D’Amelio M, Criollo A, Morselli E, Zhu C, Harper F, Nannmark U, Samara C, Pinton P, Vicencio JM, Carnuccio R, Moll UM, Madeo F, Paterlini-Brechot P, Rizzuto R, Szabadkai G, Pierron G, Blomgren K, Tavernarakis N, Codogno P, Cecconi F, Kroemer G (2008) Regulation of autophagy by cytoplasmic p53. Nat Cell Biol 10:676–687

    Article  PubMed  CAS  Google Scholar 

  37. Morselli E, Shen S, Ruckenstuhl C, Bauer MA, Marino G, Galluzzi L, Criollo A, Michaud M, Maiuri MC, Chano T, Madeo F, Kroemer G (2011) p53 inhibits autophagy by interacting with the human ortholog of yeast Atg17, RB1CC1/FIP200. Cell Cycle 10:2763–2769

    Article  PubMed  CAS  Google Scholar 

  38. Fujii S, Mitsunaga S, Yamazaki M, Hasebe T, Ishii G, Kojima M, Kinoshita T, Ueno T, Esumi H, Ochiai A (2008) Autophagy is activated in pancreatic cancer cells and correlates with poor patient outcome. Cancer Sci 99:1813–1819

    Article  PubMed  CAS  Google Scholar 

  39. Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, Bause A, Li Y, Stommel JM, Dell’antonio G, Mautner J, Tonon G, Haigis M, Shirihai OS, Doglioni C, Bardeesy N, Kimmelman AC (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev 25:717–729

    Article  PubMed  CAS  Google Scholar 

  40. Sotelo J, Briceno E, Lopez-Gonzalez MA (2006) Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 144:337–343

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Silvia di Agostino (Regina Elena Cancer Institute, Rome, Italy) who kindly provided us with the p53-null non-small cell lung cancer cell line. This work was supported by Associazione Italiana Ricerca Cancro (AIRC), Milan, Italy; Fondazione CariPaRo, Padova, Italy; Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR), Rome, Italy; Progetti di Ricerca di Interesse Nazionale (PRIN, MIUR), Rome, Italy.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Donadelli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Effect of CP-31398 or RITA on p53-null cancer cells (H1299). a H1299 cells were seeded in 100-mm diameter culture dishes, incubated overnight, and treated with 40 μM CP-31398 or RITA for 16 h. Nuclear extracts were used to perform electrophoretic mobility shift assay (EMSA), as described in “Materials and methods” section. Nuclear extracts of Panc1 cells treated with 40 μM CP-31398 for 16 h were used as positive control. b H1299 cells were seeded in 96-well plates, incubated overnight, and treated with increasing concentrations of CP-31398 or RITA for 24 h. Cell proliferation was determined using the Crystal Violet colorimetric assay. Values are the means (±SD) of three independent experiments each performed in triplicate. c H1299 cells were seeded in 96-well plates, incubated overnight, and treated with increasing concentrations of CP-31398 or RITA for 24 h. Apoptosis was analyzed using the annexinV binding assay. Values are the means (±SD) of three independent experiments each performed in triplicate. d H1299 cells were seeded in 96-well plates, incubated overnight, and treated with increasing concentrations of CP-31398 or RITA for 24 h. Autophagosomes formation assay was analyzed using the incorporation of monodansylcadaverine (MDC) probe. Values are the means (±SD) of three independent experiments each performed in triplicate. Supplementary material 1 (TIFF 127 kb)

Supplementary Fig. 2

Effect of CP-31398 or RITA on p53 phosphorylation (Ser15) and p53 expression. Normal fibroblasts were seeded in 100-mm diameter culture dishes, incubated overnight, and treated with 40 μM CP-31398 or RITA for 24 h. Whole-cell extracts were used for Western blot analysis Supplementary material 2 (TIFF 83 kb)

Supplementary Fig. 3

Effect of Compound C on AMPK/mTOR axis. a Cells were seeded in 100-mm diameter culture dishes, incubated overnight, and treated with 20 μM Compound C for 24 h. Whole-cell extracts were used for western blot analyses. b and c Quantitative analyses of P-AMPK/P-p70S6K and AMPK/p70S6K ratios. The bands were scanned as digital peaks and the areas of the peaks were calculated in arbitrary units, as described in “Materials and methods” section. The value of Ponceau S dye was used as a normalizing factor. Values are the means of three independent experiments (±SD). Statistical analysis: (*) p < 0.05 Compound C versus CTRL Supplementary material 3 (TIFF 137 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiorini, C., Menegazzi, M., Padroni, C. et al. Autophagy induced by p53-reactivating molecules protects pancreatic cancer cells from apoptosis. Apoptosis 18, 337–346 (2013). https://doi.org/10.1007/s10495-012-0790-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-012-0790-6

Keywords

Navigation