Skip to main content

Advertisement

Log in

Novel combination of salinomycin and resveratrol synergistically enhances the anti-proliferative and pro-apoptotic effects on human breast cancer cells

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Resveratrol (RES) is a natural polyphenol having anti-proliferative activity against breast cancer cells. RES in combination with other chemo modulatory agents, minimizes toxicity and increases efficacy of the treatment. Salinomycin (SAL), a monocarboxylic polyether ionophore is known for selectively targeting breast cancer stem cells. Purpose of the present study was to investigate whether RES in combination with SAL exerts synergistic anti-proliferative activity on breast cancer cells. We further evaluated the molecular mechanism behind SAL and RES mediated cell death. Cytotoxicity assay was performed to determine 50% inhibitory concentration (IC50) of SAL and RES in different human breast cancer cells (HBCCs). Drug synergism and combination index (CI) were calculated using CompuSyn software and effects of synergistic combinations (CI < 1) involving lower doses of SAL and RES were selected for further studies. This combination significantly induced apoptosis in HBCCs without affecting non tumorigenic human breast epithelial cells MCF-10A. Co-treatment enhanced apoptosis in MCF-7 cells via reactive oxygen species (ROS) mediated mitochondrial dysfunction. Oxidative stress disrupt redox homeostasis which altered antioxidant enzymes viz. CuZn Superoxide dismutase (SOD), MnSOD and catalase. Additionally, combination altered nuclear morphology, enhanced PARP cleavage and led to caspase activation. SAL and RES also synergistically modulated MAPK pathway. Study suggests that SAL and RES offer a novel combination approach for the treatment of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108

    Article  PubMed  Google Scholar 

  2. Carter LG, D’Orazio JA, Pearson KJ. (2014) Resveratrol and cancer: focus on in vivo evidence. Endocr Related Cancer 21:R209–R225

    Article  CAS  Google Scholar 

  3. Tinoco G, Warsch S, Gluck S, Avancha K, Montero AJ (2013) Treating breast cancer in the 21st century: emerging biological therapies. J Cancer 4:117–132

    Article  PubMed  PubMed Central  Google Scholar 

  4. Higgins MJ, Baselga J (2011) Targeted therapies for breast cancer. J Clin Invest 121:3797–3803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gottesman MM, Pastan I (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62:385–427

    Article  CAS  PubMed  Google Scholar 

  6. Suntharalingam K, Lin W, Johnstone TC et al (2014) A breast cancer stem cell-selective, mammospheres-potent osmium(VI) nitrido complex. J Am Chem Soc 136:14413–14416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen LS, Wang AX, Dong B, Pu KF, Yuan LH, Zhu YM (2012) A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer. Chinese. J Cancer 31:564–572

    CAS  Google Scholar 

  8. Jangamreddy JR, Ghavami S, Grabarek J et al (2013) Salinomycin induces activation of autophagy, mitophagy and affects mitochondrial polarity: differences between primary and cancer cells. Biochim Biophys Acta 1833:2057–2069

    Article  CAS  PubMed  Google Scholar 

  9. Fuchs D, Heinold A, Opelz G, Daniel V, Naujokat C (2009) Salinomycin induces apoptosis and overcomes apoptosis resistance in human cancer cells. Biochem Biophys Res Commun 390:743–749

    Article  CAS  PubMed  Google Scholar 

  10. Huczynski A, Janczak J, Antoszczak M, Wietrzyk J, Maj E, Brzezinski B (2012) Antiproliferative activity of salinomycin and its derivatives. Bioorg Med Chem Lett 22:7146–7150

    Article  CAS  PubMed  Google Scholar 

  11. Ketola K, Hilvo M, Hyotylainen T et al (2012) Salinomycin inhibits prostate cancer growth and migration via induction of oxidative stress. Br J Cancer 106:99–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang F, He L, Dai WQ et al (2012) Salinomycin inhibits proliferation and induces apoptosis of human hepatocellular carcinoma cells in vitro and in vivo. PLoS ONE 7:e50638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou S, Wang F, Wong ET et al (2013) Salinomycin: a novel anti-cancer agent with known anti-coccidial activities. Curr Med Chem 20:4095–4101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gupta PB, Onder TT, Jiang G et al (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138:645–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dewangan J, Srivastava S, Rath SK (2017) Salinomycin: a new paradigm in cancer therapy. Tumour Biol 39:1010428317695035

    Article  PubMed  Google Scholar 

  16. Ojo OO, Bhadauria S, Rath SK (2013) Dose-dependent adverse effects of salinomycin on male reproductive organs and fertility in mice. PLoS ONE 8:e69086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aleman M, Magdesian KG, Peterson TS, Galey FD (2007) Salinomycin toxicosis in horses. J Am Vet Med Assoc 230:1822–1826

    Article  CAS  PubMed  Google Scholar 

  18. Sinha D, Sarkar N, Biswas J, Bishayee A. (2016) Resveratrol for breast cancer prevention and therapy: preclinical evidence and molecular mechanisms. Seminars in cancer biology. Academic Press, Cambridge

    Google Scholar 

  19. Fremont L (2000) Biological effects of resveratrol. Life Sci 66:663–673

    Article  CAS  PubMed  Google Scholar 

  20. Baur JA, Sinclair DA. (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506

    Article  CAS  PubMed  Google Scholar 

  21. Shi J, Zeng Q, Liu Y, Pan Z (2012) Alternaria sp. MG1, a resveratrol-producing fungus: isolation, identification, and optimal cultivation conditions for resveratrol production. Appl Microbiol Biotechnol 95:369–379

    Article  CAS  PubMed  Google Scholar 

  22. Subbaramaiah K, Chung WJ, Michaluart P et al (1998) Resveratrol inhibits cyclooxygenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells. J Biol Chem 273:21875–21882

    Article  CAS  PubMed  Google Scholar 

  23. Le Corre L, Chalabi N, Delort L, Bignon YJ, Bernard-Gallon DJ. (2005) Resveratrol and breast cancer chemoprevention: molecular mechanisms. Molecular Nutr Food Res 49:462–471

    Article  CAS  Google Scholar 

  24. Gupta SC, Kannappan R, Reuter S, Kim JH, Aggarwal BB (2011) Chemosensitization of tumors by resveratrol. Ann N Y Acad Sci 1215:150–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58:621–681

    Article  CAS  PubMed  Google Scholar 

  26. Holliday DL, Speirs V. (2011) Choosing the right cell line for breast cancer research. Breast Cancer Res 13:215

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chou TC, Talalay P (1981) Generalized equations for the analysis of inhibitions of Michaelis–Menten and higher-order kinetic systems with two or more mutually exclusive and nonexclusive inhibitors. European journal of biochemistry/FEBS 115:207–216

    Article  CAS  Google Scholar 

  28. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  CAS  PubMed  Google Scholar 

  29. Chou TC (2010) Drug combination studies and their synergy quantification using the Chou–Talalay method. Cancer Res 70:440–446

    Article  CAS  PubMed  Google Scholar 

  30. Saraste A, Pulkki K (2000) Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res 45:528–537

    Article  CAS  PubMed  Google Scholar 

  31. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184:39–51

    Article  CAS  PubMed  Google Scholar 

  32. Michaeloudes C, Sukkar MB, Khorasani NM, Bhavsar PK, Chung KF (2011) TGF-beta regulates Nox4, MnSOD and catalase expression, and IL-6 release in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 300:L295–L304

    Article  CAS  PubMed  Google Scholar 

  33. Baluchamy S, Ravichandran P, Ramesh V et al (2012) Reactive oxygen species mediated tissue damage in high energy proton irradiated mouse brain. Mol Cell Biochem 360:189–195

    Article  CAS  PubMed  Google Scholar 

  34. Kim SJ, Jung HJ, Lim CJ (2011) Disruption of redox homeostasis and induction of apoptosis by suppression of glutathione synthetase expression in a mammalian cell line. Free Radic Res 45:1040–1051

    Article  CAS  PubMed  Google Scholar 

  35. Schrader M, Fahimi HD (2006) Peroxisomes and oxidative stress. Biochim Biophys Acta 1763:1755–1766

    Article  CAS  PubMed  Google Scholar 

  36. Patrushev N, Seidel-Rogol B, Salazar G (2012) Angiotensin II requires zinc and downregulation of the zinc transporters ZnT3 and ZnT10 to induce senescence of vascular smooth muscle cells. PLoS ONE 7:e33211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chau LY (2015) Heme oxygenase-1: emerging target of cancer therapy. J Biomed Sci 22:22

    Article  PubMed  PubMed Central  Google Scholar 

  38. Verdoodt B, Vogt M, Schmitz I, Liffers ST, Tannapfel A, Mirmohammadsadegh A (2012) Salinomycin induces autophagy in colon and breast cancer cells with concomitant generation of reactive oxygen species. PLoS ONE 7:e44132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kumar S (2007) Caspase function in programmed cell death. Cell Death Differ 14:32–43

    Article  CAS  PubMed  Google Scholar 

  40. McIlwain DR, Berger T, Mak TW. (2013) Caspase functions in cell death and disease. Cold Spring Harbor Perspect Biol 5:a008656

    Article  Google Scholar 

  41. Huang WR, Zhang Y, Tang X (2014) Shikonin inhibits the proliferation of human lens epithelial cells by inducing apoptosis through ROS and caspase-dependent pathway. Molecules 19:7785–7797

    Article  PubMed  Google Scholar 

  42. Germain M, Affar EB, D’Amours D, Dixit VM, Salvesen GS, Poirier GG (1999) Cleavage of automodified poly(ADP-ribose) polymerase during apoptosis. Evidence for involvement of caspase-7. J Biol Chem 274:28379–28384

    Article  CAS  PubMed  Google Scholar 

  43. Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HO (2011) Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J Signal Transduct 2011:792639

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Council of Scientific and Industrial Research, networking project BSC0103. J.D. gratefully acknowledge the fellowship received from University Grant Commission, New Delhi, A.K.V. and D.T. acknowledge the fellowship received from Council of Scientific and Industrial Research, S.S. acknowledge the fellowship received from Indian Council of Medical Research. Authors want to acknowledge Mr. A.L. Vishwakarma for support in flow cytometric studies. We are greatly thankful to Dr. Sharad Sharma for his valuable help in English editing of this manuscript. CSIR-CDRI communication number for this manuscript is 9514.

Author information

Authors and Affiliations

Authors

Contributions

JD and SKR designed study, analysed data and prepared draft of manuscript. JD, DT, AY performed experimental work. SS and AKV helped in flow cytometer and data interpretation. All authors reviewed the manuscript.

Corresponding author

Correspondence to Srikanta Kumar Rath.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dewangan, J., Tandon, D., Srivastava, S. et al. Novel combination of salinomycin and resveratrol synergistically enhances the anti-proliferative and pro-apoptotic effects on human breast cancer cells. Apoptosis 22, 1246–1259 (2017). https://doi.org/10.1007/s10495-017-1394-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-017-1394-y

Keywords

Navigation