Skip to main content

Advertisement

Log in

The Role of CaCO3 Reactions in the Contemporary Oceanic CO2 Cycle

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

The present analysis adjusts previous estimates of global ocean CaCO3 production rates substantially upward, to 133 × 1012 mol yr−1 plankton production and 42 × 1012 mol yr−1 shelf benthos production. The plankton adjustment is consistent with recent satellite-based estimates; the benthos adjustment includes primarily an upward adjustment of CaCO3 production on so-called carbonate-poor sedimentary shelves and secondarily pays greater attention to high CaCO3 mass (calcimass) and turnover of shelf communities on temperate and polar shelves. Estimated CaCO3 sediment accumulation rates remain about the same as they have been for some years: ~20 × 1012 mol yr−1 on shelves and 11 × 1012 mol yr−1 in the deep ocean. The differences between production and accumulation of calcareous materials call for dissolution of ~22 × 1012 mol yr−1 (~50 %) of shelf benthonic carbonate production and 122 × 1012 mol yr−1 (>90 %) of planktonic production. Most CaCO3 production, whether planktonic or benthonic, is assumed to take place in water depths of <100 m, while most dissolution is assumed to occur below this depth. The molar ratio of CO2 release to CaCO3 precipitation (CO2↑/CaCO3↓) is <1.0 and varies with depth. This ratio, Ψ, is presently about 0.66 in surface seawater and 0.85 in ocean waters deeper than about 1000 m. The net flux of CO2 associated with CaCO3 reactions in the global ocean in late preindustrial time is estimated to be an apparent influx from the atmosphere to the ocean, of +7 × 1012 mol C yr−1, at a time scale of 102–103 years. The CaCO3-mediated influx of CO2 is approximately offset by CO2 release from organic C oxidation in the water column. Continuing ocean acidification will have effects on CaCO3 and organic C metabolic responses to the oceanic inorganic C cycle, although those responses remain poorly quantified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexandersson ET (1978) Destructive diagenesis of carbonate sediments in the eastern Skagerrak, North Sea. Geology 6:324–327

    Article  Google Scholar 

  • Andersson AJ, Gledhill D (2013) Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Annu Rev Mar Sci. doi:10.1146/annurev-marine-121211-172241

    Google Scholar 

  • Andersson AJ, Mackenzie FT (2004) Shallow-water oceans: a source or a sink of atmospheric CO2? Front Ecol Environ 2:348–353

    Google Scholar 

  • Andersson AJ, Mackenzie FT, Lerman A (2005) Coastal ocean and carbonate systems in the high CO2 world of the Anthropocene. Am J Sci 305:875–918

    Article  Google Scholar 

  • Andersson AJ, Bates N, Mackenzie FT (2007) Dissolution of carbonate sediments under rising pCO2 and ocean acidification: observations from Devil’s Hole, Bermuda. Aquat Geochem 13:237–264

    Article  Google Scholar 

  • Armando-Filho GM et al (2012) Rhodolith beds are major CaCO3 biofactories in the tropical south west Atlantic. PLoS ONE. doi:10.1371/journal.pone.0035171

    Google Scholar 

  • Balch W, Drapeau D, Bowler B, Booth E (2007) Prediction of pelagic calcification rates using satellite measurements. Deep-Sea Res II 54:478–495

    Article  Google Scholar 

  • Bednarsek N et al (2012) Extensive dissolution of live pteropods in the Southern Ocean. Nat Geosci 5:881–885

    Article  Google Scholar 

  • Bednarsek N, Feely RA, Reum JCP, Peterson B, Menkel J, Alin SR, Hales B (2014) Limacia helicina shell dissolution as an indicator of declining habitat suitability owing to ocean acidification in the Californai Current Ecosystem. Proc R Soc B. doi:10.1098/rspb.2014.0123

    Google Scholar 

  • Berelson WM, Balch WM, Najjar R, Feely RA, Sabine C, Lee K (2007) Relating estimates of CaCO3 production, export, and dissolution in the water column to measurements of CaCO3 rain into sediment traps and dissolution on the sea floor: a revised global carbonate budget. Glob Biogeochem Cycles 21:GB1024. doi:10.1029/2006GB002803

    Article  Google Scholar 

  • Berner RA (1991) A model for atmospheric CO2 over Phanerozoic time. Am J Sci 291:339–376

    Article  Google Scholar 

  • Berner RA (2004) The phanerozoic carbon cycle: CO2 and O2. Oxford University Press, Oxford

    Google Scholar 

  • Berner RA, Lasaga AC, Garrels RM (1983) The carbonate–silicate geochemical cycle and its effect on atmospheric carbon dioxide and climate. Am J Sci 283:641–683

    Article  Google Scholar 

  • Bosence DWJ (1980) Sedimentary facies, production rates and facies models for recent coralline algal gravels, Co. Galway, Ireland. Geol J 15(2):91–111

    Article  Google Scholar 

  • Bosence D, Wilson J (2003) Maerl growth, carbonate production rates and accumulation rates in the northeast Atlantic. Aquat Conserv Mar Freshw Ecosyst 13:S21–S31

    Article  Google Scholar 

  • Broecker WS, Takahashi T (1966) Calcium carbonate precipitation on the Bahama Banks. J Geophys Res 71:1575–1602

    Article  Google Scholar 

  • Burdige DJ, Zimmerman RC, Hu X (2008) Rates of carbonate dissolution in permeable sediments estimated from porewater profiles: the role of sea grasses. Limnol Oceanogr 53:549–565

    Article  Google Scholar 

  • Burdige DJ, Hu X, Zimmerman RC (2010) The widespread occurrence of coupled carbonate dissolution/reprecipitation in surface sediments on the Bahamas Bank. Am J Science 310:492–521

    Article  Google Scholar 

  • Canals M, Ballesteros E (1997) Production of carbonate particles by phytobenthic communities on the Mallorca–Menorca shelf, northwestern Mediterranean Sea. Deep Sea Res II Top Stud Oceanogr 44:611–629

    Article  Google Scholar 

  • Cebrián E, Ballesteros E, Canals M (2000) Shallow rocky bottom benthic assemblages as calcium carbonate producers in the Alboran Sea (southwestern Mediterranean). Oceanol Acta 23:311–322

    Article  Google Scholar 

  • Chauvaud L, Thompson JK, Cloern JE, Thouzeau G (2003) Clams as CO2 generators: the Potamocorbtula amurensis example in San Francisco Bay. Limnol Oceanogr 48:2086–2092

    Article  Google Scholar 

  • Chave KE (1967) Recent carbonate sediments—an unconventional view. J Geol Educ 15:200–204

    Google Scholar 

  • Chave KE, Smith SV, Roy KJ (1972) Carbonate production by coral reefs. Mar Geol 12:123–140

    Article  Google Scholar 

  • Cocito S, Ferdeghini F (2001) Carbonate standing stock and carbonate production of the bryozoan Pentapora fascialis in the north-western Mediterranean. Facies 45:25–30

    Article  Google Scholar 

  • Colin PL, Devaney D, Hillis-Colinvaux L, Suchanek TH, Harrison JT (1986) Geology and biological zonation of the reef slope, 50–360 m depth at Enewetak Atoll, Marshall Islands. Bull Mar Sci 38:111–128

    Google Scholar 

  • Crutzen PJ (2002) Geology of mankind. Nature 45:23

    Article  Google Scholar 

  • Darwin C (1842) The structure and distribution of coral reefs. Smith, Elder and Company, UK

    Google Scholar 

  • Davoult D, Harlay J, Gentil F (2009) Contribution of a dense population of the brittle star Acrocnida brachiate (Montagu) to the biogeochemical fluxes of CO2 in a temperate coastal ecosystem. Estuar Coasts. doi:10.1007/s12237-009-9216-2

    Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192

    Article  Google Scholar 

  • Drupp PS, De Carlo EH, Mackenzie FT, Sabine CL, Feely RA, Shamberger KE (2013) Comparison of CO2 dynamics and air–sea gas exchange in differing tropical reef environments. Aquat Geochem 19:371–397

    Article  Google Scholar 

  • Edyvean RGJ, Ford H (1987) Growth rates of Lithophyllum incrustans (Corallinales, Rhodophyta) from South West Wales. Brit Phycol J 22:139–146

    Article  Google Scholar 

  • Egleston ES, Sabine CL, Morel FMM (2010) Revelle revisited: buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity. Glob Biogeochem Cycles. doi:10.1029/S2008GB003407

    Google Scholar 

  • Emerson S (2014) Annual net community production and the biological carbon flux in the ocean. Glob Biogeochem Cycles 28:14–28. doi:10.1002/2013GB004680

    Article  Google Scholar 

  • England MH (1995) The age of water and ventilation timescales in a global ocean model. J Phys Ocean 25:2756–2777

    Article  Google Scholar 

  • Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432

    Article  Google Scholar 

  • Falter JL, Lowe RJ, Zhang Z, McCulloch M (2013) Physical and biological controls on the carbonate chemistry of coral reef waters: effects of metabolism, wave forcing, sea level, and geomorphology. PloS ONE 8:e533303. doi:10.1371/journal.pone.0053303

    Article  Google Scholar 

  • Farrow GE, Allen NH, Akpan EB (1984) Bioclastic carbonate sedimentation on a high-latitude, tide-dominated shelf: northeast Orkney Islands, Scotland. J Sediment Res 54:373–393

    Article  Google Scholar 

  • Feely RA et al (2002) In situ calcium carbonate dissolution in the Pacific Ocean. Glob Biogeochem Cycles 16:GB1144. doi:10.1029/2002GB001866

    Article  Google Scholar 

  • Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system of the oceans. Science 305:362–366

    Article  Google Scholar 

  • Fortunato H, Schafer P (2009) Coralline algae as carbonate producers and habitat providers on the eastern Pacific cost of Panamá: preliminary assessment. Neues Jahrbuch für Geologie und Palantologie-Abhandlungen 253:145–161

    Article  Google Scholar 

  • Foster MS (2001) Rhodoliths: between rocks and soft places. J Phycol 37:659–667

    Article  Google Scholar 

  • Frankignoulle M, Canon C, Gattuso JP (1994) Marine calcification as a source of carbon dioxide: positive feedback of increasing atmospheric CO2. Limnol Oceanogr 39:458–462

    Article  Google Scholar 

  • Freiwald A (1993) Coralline algal maerl frameworks—islands within the phaeophytic kelp belt. Facies 29:133–148

    Article  Google Scholar 

  • Freiwald A (1998) Microbial maceration and carbonate dissolution on cold-temperate shelves. Hist Geol 13:27–35

    Google Scholar 

  • Freiwald A, Heinrich R (1994) Reefal coralline algal build-ups within the Arctic Circle: morphology and sedimentary dynamics under extreme environmental seasonality. Sedimentology 41:963–984

    Article  Google Scholar 

  • Friis K, Najjar RR, Follows MJ, Dutkiewicz S (2006) Possible overestimation of shallow-depth carbonate dissolution in the ocean. Glob Biogeochem Cycles 20:GB4019. doi:10.1029/2006GB002727

    Article  Google Scholar 

  • Garrels RM, Mackenzie FT (1971) Evolution of sedimentary rocks. WW Norton, New York

    Google Scholar 

  • Garrels RM, Mackenzie FT, Hunt C (1975) Chemical cycles and the global environment. W. Kaufmann, Inc

  • Gattuso JP, Hansson L (eds) (2011) Ocean acidification. Oxford University Press, Oxford

    Google Scholar 

  • Gazeau F, Quiblier C, Jansen JM, Gattuso JP, Middelburg JJ, Heip CHR (2007) Impact of elevated CO2 on shellfish calcification. Geophys Res Lett 34:L07603. doi:10.1029/2006GL028554

    Article  Google Scholar 

  • Gherardi DFM (2004) Community structure and carbonate production of a temperate rhodolith bank from Arvoredo Island, southern Brazil. Braz J Oceanogr 52:207–224

    Google Scholar 

  • Ginsburg RN, James NP (1974) Holocene carbonate sediments of continental shelves. In: Burke C, Drake C (eds) The geology of continental margins. Springer, Berlin, pp 137–155

    Chapter  Google Scholar 

  • Guinotte JM, Buddemeier RW, Kleypas JA (2003) Future coral reef habitat marginality: temporal and spatial effects of climate change in the Pacific basin. Coral Reefs 22:551–558

    Article  Google Scholar 

  • Heinrich RA et al (1995) Controls on modern carbonate sedimentation on warm-temperate to arctic coasts, shelves and seamounts in the Northern Hemisphere: implications for fossil counterparts. Facies 32:71–108

    Article  Google Scholar 

  • Holland HD (1978) The chemistry of the atmosphere and oceans. Wiley, London

    Google Scholar 

  • Honjo S, Manganini SJ, Krishfield RA, Francois R (2008) Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: a synthesis of global sediment trap programs since 1983. Prog Oceanogr 76:217–285

    Article  Google Scholar 

  • Iglesias-Rodriguez MD, Armstrong R, Feely R, Hood R, Kleypas J, Milliman JD, Sabine C, Sarmiento J (2002) Progress made in study of ocean’s calcium carbonate budget. Eos 83(365):374–375

    Google Scholar 

  • James NP, Boreen TD, Bone Y, Feary DA (1994) Holocene carbonate sedimentation on the west Eucla Shelf, Great Australian Bight: a shaved shelf. Sediment Geol 90:161–177

    Article  Google Scholar 

  • Johnston J, Williamson ED (1916) The role of inorganic agencies in the deposition of calcium carbonate. J Geol 24:729–750

    Article  Google Scholar 

  • Jokiel PL, Rodgers KS, Kuffner IB, Andersson AJ, Cox EF, Mackenzie FT (2008) Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27:473–483

    Article  Google Scholar 

  • Kinsey DW (1972) Preliminary observations on community metabolism and primary productivity of the pseudo-atoll reef at One Tree Island, Great Barrier Reef. In: Proceedings of the symposium on corals and coral reefs. Cochin, India, pp 13–32

  • Kinsey DW (1979) Carbon turnover and accumulation by coral reefs. Ph.D. Dissertation, University of Hawaii

  • Kinsey DW (1985) Metabolism, calcification and carbon production: I. System level studies. In: Proceedings of the fifth international coral reef congress, Tahiti, vol 4, pp 505–526

  • Kleypas JA, Langdon C (2006) Coral reefs and changing seawater carbonate chemistry. Coast Estuar Stud 61:73–110

    Article  Google Scholar 

  • Kleypas JA, Buddemeier RW, Archer D, Gattuso JP, Langdon C, Opdyke BN (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120

    Article  Google Scholar 

  • Kroeker KJ, Kordas RC, Crim R, Hendriks IE, Ramajo L, Singh FS, Duarte CM, Gattuso JP (2013) Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Change Biol 19:1884–1896

    Article  Google Scholar 

  • Le Quéré C et al (2014) Global carbon budget 2013. Earth Syst Sci Data 6:235–263. doi:10.5194/essd-6-235-2014

    Article  Google Scholar 

  • Lebrato M et al (2010) Global contribution of echinoderms to the marine carbon cycle: CaCO3 budget and benthic compartments. Ecol Monogr 80:441–467

    Article  Google Scholar 

  • Lee K (2001) Global net community production estimated from the annual cycle of surface water total dissolved inorganic carbon. Limnol Oceanogr 46:1287–1297

    Article  Google Scholar 

  • Lees A (1975) Possible influence of salinity and temperature on modern shelf carbonate sedimentation. Mar Geol 19:159–198

    Article  Google Scholar 

  • Lees A, Buller AT (1972) Modern temperate–water and warm water shelf carbonate sediments contrasted. Mar Geol 13:M67–M73

    Article  Google Scholar 

  • Lindberg B, Mienert J (2005) Postglacial carbonate production by cold-water corals on the Norwegian shelf and their role in the global carbonate budget. Geology 33:537–540

    Article  Google Scholar 

  • Lyman J (1957) Buffer mechanism of seawater. Ph.D. dissertation, University of California, Los Angeles

  • Mackenzie FT, Andersson AJ (2011) Biological controls on diagenesis: influence of bacteria and relevance to ocean acidification. In: Reitner J, Thiel V (eds) Encyclopedia of geobiology. Springer, Berlin, pp 137–143

    Chapter  Google Scholar 

  • Mackenzie FT, Andersson AJ (2013) The marine carbon system and ocean acidification during Phanerozoic time. Geochem Perspect 2:1–227

    Article  Google Scholar 

  • Mackenzie FT, Andersson AJ, Lerman A, Ver LM (2005) Boundary exchanges in the global coastal margin: implications for the organic and inorganic carbon cycles. In: Robinson AR, Brink KH (eds) The sea, vol 10. Harvard University Press, Cambridge, pp 193–225

    Google Scholar 

  • Martin WR, Sayles FL (1996) CaCO3 dissolution in sediments of the Ceara Rise, western equatorial Atlantic. Geochim Cosmochim Acta 60:243–263

    Article  Google Scholar 

  • Martin S, Clavier J, Chavaud L, Thouzeau G (2007a) Community metabolism in temperate maerl beds. I. Carbon and carbonate fluxes. Mar Ecol Prog Ser 335:19–29

    Article  Google Scholar 

  • Martin S, Thouzeau G, Richard M, Chavaud L, Jean F, Clavier J (2007b) Benthic community respiration in areas impacted by the invasive mollusk Crepidula fornicata. Mar Ecol Prog Ser 347:51–60

    Article  Google Scholar 

  • Massaro RFS, De Carlo EH, Drupp PS, Mackenzie FT, Jones SM, Shamberger KE, Sabine CL, Feely RA (2012) Multiple factors driving variability of CO2 exchange between the ocean and atmosphere in a tropical coral reef environment. Aquat Geochem 18:357–386

    Article  Google Scholar 

  • Medernach L, Jordana E, Grémare A, Nozais C, Charles F, Amouroux JM (2000) Population dynamics, secondary production and calcification in a Mediterranean population of Ditrupa arietina (Annelida: Polychaeta). Mar Ecol Prog Ser 199:171–184

    Article  Google Scholar 

  • Migné A, Davoult D, Gattuso JP (1998) Calcium carbonate production of a dense population of the ophiuroid Ophiothrix fragilis: role in the carbon cycle of a coastal ecosystem. Mar Ecol Prog Ser 173:305–308

    Article  Google Scholar 

  • Milliman JD (1974) Marine carbonates. Springer, Berlin

    Google Scholar 

  • Milliman JD (1993) Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Glob Biogeochem Cycles 7:927–957

    Article  Google Scholar 

  • Milliman JD, Droxler AW (1995) Calcium carbonate sedimentation in the global ocean: linkages between the neritic and pelagic environments. Oceanography 8:92–94

    Article  Google Scholar 

  • Milliman JD, Droxler AW (1996) Neritic and pelagic carbonate sedimentation in the marine environment: ignorance is not bliss. Geol Rundsch 85:496–504

    Article  Google Scholar 

  • Milliman J, Troy PJ, Balch W, Adams AK, Li YH, Mackenzie FT (1999) Biologically mediated dissolution of calcium carbonate above the chemical lysocline? Deep-Sea Res I 46:1653–1669

    Article  Google Scholar 

  • Morse JW, Mackenzie FT (1990) Geochemistry of sedimentary carbonates. Elsevier, Amsterdam

    Google Scholar 

  • Morse JW, Millero FJ, Thurmond V, Brown E, Ostlund HG (1984) The carbonate chemistry of Grand Bahama Bank waters: after 38 years, another look. J Geophys Res 89:3604–3614

    Article  Google Scholar 

  • Moulin E, Jordens A, Wollast R (1985) Influence of the aerobic bacterial respiration on the early dissolution of carbonates in coastal sediments. In Progress in Belgium Oceanographic Research, Brussels, pp 196–205

  • Murray J, Renard AF (1891) Report on deep-sea deposits based on specimens collected during the voyage of H. M. S Challenger in the years 1872 to 1876. Challenger Reports

  • Nelson CS (1988) An introductory perspective on non-tropical shelf carbonates. Sediment Geol 60:3–12

    Article  Google Scholar 

  • Nelson CS, Keane SL, Head PS (1988) Non-tropical carbonate deposits on the modern New Zealand shelf. Sediment Geol 60:71–94

    Article  Google Scholar 

  • Pedley M, Carannante G (2006) Cool-water carbonate ramps: a review. In: Pedley HM, Carannante G (eds) Cool-water carbonates: depositional systems and palaeoenvironmental controls, vol 255. Geological Society, Special Publications, London, pp 1–9

    Google Scholar 

  • Peirano A, Morri C, Bianchi CN, Rodolfo-Metalpa R (2001) Biomass, carbonate standing stock and production of the Mediterranean corals Cladocora caespitosa (L.). Facies 44:75–80

    Article  Google Scholar 

  • Potin P, Floch JY, Augris C, Cabioch J (1990) Annual growth rate of the calcareous red alga Lithothamnion corallioides (Corallinales, Rhodophyta) in the Bay of Brest, France. Hydrobiologia 204(205):263–267

    Article  Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543–547

    Article  Google Scholar 

  • Rodgers J (1957) The distribution of marine carbonate sediments: a review. In: Leblanc RJ, Breeding JG (eds) Regional aspects of carbonate deposition, vol 5. Society of Economic Paleontologists and Mineralogists Special Publication, USA, pp 2–14

    Chapter  Google Scholar 

  • Sabine CL, Mackenzie FT (1991) Oceanic sinks for anthropogenic CO2. In: Energy and environmental progress series F, environment and energy, nova science, pp 367–382

  • Sabine CL, Mackenzie FT (1995) Bank-derived carbonate sediment transport and dissolution in the Hawaiian Archipelago. Aquat Geochem 1:189–230

    Article  Google Scholar 

  • Sabine CL, Key RM, Feely RA, Greeley D (2002) Inorganic carbon in the Indian Ocean: distribution and dissolution processes. Glob Biogeochem Cycles 16:1067. doi:10.1029/2001GB001869

    Google Scholar 

  • Schlünz B, Schneider RR (2000) Transport of terrestrial organic carbon to the oceans by rivers: re-estimating flux and burial rates. Int J Earth Sci 88:599–606

    Article  Google Scholar 

  • Silverman J, Lazar B, Cao L, Caldeira K, Erez J (2009) Coral reefs may start dissolving when atmospheric CO2 doubles. Geophys Res Lett 36:L05606. doi:10.1029/2008GL036282

    Article  Google Scholar 

  • Smith SV (1971) Budget of calcium carbonate, Southern California Continental Borderland. J Sediment Res 41:798–808

    Article  Google Scholar 

  • Smith SV (1972) Production of calcium carbonate on the mainland shelf of southern California. Limnol Oceanogr 17:28–41

    Article  Google Scholar 

  • Smith SV (1973) Carbon dioxide dynamics: a record of organic carbon production, respiration, and calcification in the Eniwetok reef flat community. Limnol Oceanogr 18:106–120

    Article  Google Scholar 

  • Smith SV (1978) Coral-reef area and the contributions of reefs to processes and resources of the world’s oceans. Nature 273:225–226

    Article  Google Scholar 

  • Smith SV (1985) Physical, chemical, and biological characteristics of CO2 gas flux across the air–water interface. Plant Cell Environ 8:387–398

    Article  Google Scholar 

  • Smith SV (2013) Parsing the oceanic calcium carbonate cycle: a net atmospheric carbon dioxide source, or a sink? L&O e-Books. Association for the Sciences of Limnology and Oceanography (ASLO) Waco, TX. doi:10.4319/svsmith.2013.978-0-9845591-2-1

  • Smith SV, Gattuso JP (2011) Balancing the oceanic calcium carbonate cycle: consequences of variable water column Ψ. Aquat Geochem 17:327–337

    Article  Google Scholar 

  • Smith SV, Hollibaugh JT (1993) Coastal metabolism and the oceanic organic carbon balance. Rev Geophys 31:75–89

    Article  Google Scholar 

  • Smith SV, Kinsey DW (1976) Calcium carbonate production, coral reef growth, and sea level change. Science 194:937–939

    Article  Google Scholar 

  • Smith SV, Mackenzie FT (1987) The ocean as a net heterotrophic system: implications from the carbon biogeochemical cycle. Glob Biogeochem Cycles 1:187–198

    Article  Google Scholar 

  • Smith AM, Nelson CS (1994) Calcification rates of rapidly colonizing bryozoans in Hauraki Gulf, northern New Zealand. NZ J Mar Freshw Res 28:227–234

    Article  Google Scholar 

  • Smith SV, Veeh HH (1989) Mass balance of biogeochemically active materials in a hypersaline gulf. Estuar Coast Shelf Sci 29:195–215

    Article  Google Scholar 

  • Smith AM, Wood ACL, Liddy MFA, Shears AE, Fraser CI (2010) Human impacts in an urban port: the carbonate budget, Otago Harbour, New Zealand. Estuar Coast Shelf Sci 90:73–79

    Article  Google Scholar 

  • Spalding MD, Grenfell AM (1997) New estimates of global and regional coral reef areas. Coral Reefs 16:225–230

    Article  Google Scholar 

  • Spalding MD, Ravilious C, Green EP (2001) World Atlas of Coral Reefs. University of California Press, Berkeley

    Google Scholar 

  • Sundquist ET (1993) The global carbon dioxide budget. Science 259:934–941

    Article  Google Scholar 

  • Sundquist ET, Plummer LN, Wigley TMI (1979) Carbon dioxide in the ocean surface: the homogeneous buffer factor. Science 204:1203–1205

    Article  Google Scholar 

  • Teichert S (2013) Rhodoliths (Corallinales, Rhodophyta) as a biosedimentary system in arctic environments (Svalbard Archipelago, Norway). Doctoral dissertation. The Natural Science Faculty of Friedrich-Alexander University, Nurnberg

  • Teichert S, Woelkerling W, Rüggerberg A, Wisshak M, Piepenburg D, Meyerhöfer M, Form A, Büdenbender J, Freiwald A (2012) Rhodolith beds (Corallinales, Rhodophyta) and their physical and biological environment at 80°31′N in Nordkappbukta (Nordaustlandet, Svalbard Archipelago, Norway). Phycologia 51:371–390

    Article  Google Scholar 

  • Tribollet A, Godinot C, Atkinson M, Langdon C (2009) Effects of elevated pCO2 on dissolution of coral carbonates by microbial euendoliths. Glob Biogeochem Cycles 23:GB3008. doi:10.1029/2008GB003286

    Article  Google Scholar 

  • Urey HC (1952) On the early chemical history of the earth and the origin of life. Proc Natl Acad Sci 38:352–363

    Article  Google Scholar 

  • Vecsei A (2000) Database on isolated low-latitude carbonate banks. Facies 43:205–222

    Article  Google Scholar 

  • Vecsei A (2001) Fore-reef carbonate production: development of a regional census-based method and first estimate. Palaeogeogr Palaeoclimatol Palaeoecol 175:185–200

    Article  Google Scholar 

  • Vecsei A (2004) A new estimate of global reefal carbonate production including the fore-reefs. Glob Planet Change 43:1–18

    Article  Google Scholar 

  • Ware JR, Smith SV, Reaka-Kudla ML (1991) Coral reefs: sources or sinks of atmospheric CO2? Coral Reefs 11:127–130

    Article  Google Scholar 

  • Wehrmann A (1998) Modern cool-water carbonates on a coastal platform of northern Brittany, France: carbonate production in macrophytic systems and sedimentary dynamics of bioclastic facies. Senckenberg Marit 28:151–166

    Article  Google Scholar 

  • Wollast R (1998) Evaluation and comparison of the global carbon cycle in the coastal zone and in the open ocean. In: Robinson AR, Brink KH (eds) The sea, vol 10. Wiley, London, pp 213–252

    Google Scholar 

Download references

Acknowledgments

Both authors owe much of their interest in CaCO3 sediments and the role of CaCO3 reactions in the oceanic carbon cycle to two mentors and colleagues: Keith Chave and Bob Garrels. John Milliman’s original oceanic CaCO3 budget and subsequent revisions have been of particular use as a template for our analysis. We thank Tim Hollibaugh, Al Zirino, Bob Buddemeier, Pat Drupp, and two anonymous reviewers for their thoughtful comments on the content and organization of this paper. Correspondence with Dan Bosence and André Freiwald has also been very helpful. Access to the UCSD Library is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen V. Smith.

Appendix: Procedure for Estimating Submerged Reefs from the “Visible Reefs” Data set Available Through the World Resources Institute (http://www.wri.org)

Appendix: Procedure for Estimating Submerged Reefs from the “Visible Reefs” Data set Available Through the World Resources Institute (http://www.wri.org)

A 7-km geographic buffer was initially applied around the visible reefs. This buffer was sufficient to include most passes between reefs (e.g., reefs around the margins of atolls). The boundaries between adjoining buffered reefs were then “dissolved,” and the ArcMap “union” function was used to join the touching, buffered reefs into individual units. So-called donut holes (empty spaces) within these buffered reefs become filled during the union function. An example of such a donut hole would the lagoons of large atolls.

Finally a “negative buffer” of 6.8 km was applied around the buffered reef features. On the assumption that seaward reef slopes average about 30°, this negative buffer operation effectively “trims” the seaward sides of these buffered reef features to a distance of 200 m seaward of the visible reefs (and an estimated oceanic water depth of about 90 m). It would be desirable to use oceanic bathymetry outside of reefs to adjust the seaward margin of submerged reefs seaward of the visible reefs. However, globally available bathymetric data remain too coarsely resolved to do so at this time.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, S.V., Mackenzie, F.T. The Role of CaCO3 Reactions in the Contemporary Oceanic CO2 Cycle. Aquat Geochem 22, 153–175 (2016). https://doi.org/10.1007/s10498-015-9282-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-015-9282-y

Keywords

Navigation