Skip to main content

Advertisement

Log in

Integrated production of Nile tilapia juveniles and lettuce using biofloc technology

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

The aim of the present study was to evaluate the use of the technology we have named for the first time as FLOCponics (biofloc + hydroponic) (FP) and conventional aquaponics (AP) systems in producing Nile tilapia (Oreochromis niloticus) juveniles and lettuce (Lactuca sativa). The experiment was carried out for 46 days and consisted of two cycles of lettuce production (23 days each) and one cycle of juvenile production. The physical–chemical variables of the water, zootechnical performance of the fish, growth performance and visual characteristics of the plants, nutrient dynamics, and characterization of the planktonic community were evaluated in both systems. The results showed better fish productive performance in FP, with a mean final weight of 36.7 g compared with 34.9 g in AP. For plants, the Cycle 2 in the AP system showed the best plant growth and visual results (98% of the plants received the highest scores—grades A (excellent) and B (good)—on the plant quality index), whereas in FP only 37% achieved these grades in the same cycle. The results suggest that the integrated production of tilapia juveniles and lettuce using FP might be technically feasible if specific fertilization management or mechanisms are developed to refine the critical points of the system (e.g., nutrient imbalance and solids accumulation in the plant roots) to improve plant production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Avnimelech Y (2007) Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture 264:140–147. https://doi.org/10.1016/j.aquaculture.2006.11.025

    Article  Google Scholar 

  • Avnimelech Y (2015) Biofloc technology – a practical guide book, 3rd edn. The World Aquaculture Society, Baton Rouge, LO

    Google Scholar 

  • Azim ME, Little DC (2008) The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture 283:29–35. https://doi.org/10.1016/j.aquaculture.2008.06.036

    Article  CAS  Google Scholar 

  • Bakhsh HK, Chopin T (2012) A variation on the IMTA theme: a land-based, closed-containment freshwater IMTA system for tilapia and lettuce. Aquaculture Canada Spec Publ No 22(22):57–60

    Google Scholar 

  • Barbosa M (2017) Biofloc technology: do filtering elements might affects lettuce aquaponics production integrated with tilapia? A thesis presented at animal science postgraduate program, Santa Catarina State University (degree of master of science), Chapecó, Santa Catarina, Brazil, December 2017

  • Brol J, Pinho SM, Sgnaulin T, Pereira KR, Thomas MC, Mello GL, Miranda-Baeza A, Emerenciano MGC (2017) Tecnologia de bioflocos (BFT) no desempenho zootécnico de tilápias: efeito da linhagem e densidades de estocagem. Archivos de Zootecnia 66:229–235

    Google Scholar 

  • Brunson MW, Lutz CG, Durborow RM (1994) Algae blooms in commercial fish production ponds. Southern regional aquaculture center may:4

  • Buhmann AK, Waller U, Wecker B, Papenbrock J (2015) Optimization of culturing conditions and selection of species for the use of halophytes as biofilter for nutrient-rich saline water. Agric Water Manag 149:102–114. https://doi.org/10.1016/j.agwat.2014.11.001

    Article  Google Scholar 

  • Correa ADS, Pinho SM, Molinari D, Pereira KR, Guitiérrez SM, Monroy-Dosta MC, Emerenciano MGC (2019) Rearing of Nile tilapia (Oreochromis niloticus) juveniles in a biofloc system employing periods of feed deprivation. Journal of applied aquaculture:1–18. https://doi.org/10.1080/10454438.2019.1679319

  • Crab R, Defoirdt T, Bossier P, Verstraete W (2012) Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture 356–357:351–356. https://doi.org/10.1016/j.aquaculture.2012.04.046

    Article  Google Scholar 

  • Danaher JJ, Shultz RC, Rakocy JE, Bailey DS (2013) Alternative solids removal for warm water recirculating raft aquaponic systems. J World Aquacult Soc 44(3):374–383. https://doi.org/10.1111/jwas.12040

    Article  CAS  Google Scholar 

  • de Alves GF, O, AFA F, Alvarenga ÉR, Turra EM, Sousa AB, Teixeira EA (2017) Effect of the transfer at different moments of juvenile Nile tilapia (Oreochromis niloticus) to the biofloc system in formation. Aquaculture 479:564–570. https://doi.org/10.1016/j.aquaculture.2017.06.029

  • Dediu L, Cristea V, Xiaoshuan Z (2012) Waste production and valorization in an integrated aquaponic system with bester and lettuce. Afr J Biotechnol 11:2349–2358. https://doi.org/10.5897/AJB11.2829

    Article  CAS  Google Scholar 

  • del Monroy-Dosta M, C, de Lara RA, Castro-Mejía J, Castro-Mejía G, MGC E (2013) Composición y abundancia de comunidades microbianas asociados al biofloc en un cultivo de tilapia. Revista de Biologia Marina y Oceanografia 48:511–520. https://doi.org/10.4067/S0718-19572013000300009

  • Delaide B, Goddek S, Gott J, Soyeurt H, Jijakli MH (2016) Lettuce (Lactuca sativa L. var. Sucrine) growth performance in complemented aquaponic solution outperforms hydroponics. Water (Switzerland) 8:1–11. https://doi.org/10.3390/w8100467

    Article  Google Scholar 

  • Delaide B, Delhaye G, Dermience M, Gott J, Soyeurt H, Jijakli MH (2017) Plant and fish production performance, nutrient mass balances, energy and water use of the PAFF box, a small-scale aquaponic system. Aquac Eng 78:130–139. https://doi.org/10.1016/j.aquaeng.2017.06.002

    Article  Google Scholar 

  • Durigon EG, Almeida APG, Jerônimo GT, Baldisseroto B, Emerenciano MGC (2019) Digestive enzymes and parasitology of Nile tilapia juveniles raised in brackish biofloc water and fed with different digestible protein and digestible energy levels. Aquaculture 506:35–41. https://doi.org/10.1016/j.aquaculture.2019.03.022

    Article  CAS  Google Scholar 

  • El-Sayed AFM (2006) Tilapia culture, 1st edn. CABI Publishing, Cambridge, MA. https://doi.org/10.1079/9780851990149.0000

    Book  Google Scholar 

  • Emerenciano M, Gaxiola G, Cuzon G (2013) Biofloc technology (BFT): a review for aquaculture application and animal food industry. In: Matovic MD (ed) Biomass now – cultivation and utilization. INTECH, pp 301–328. https://doi.org/10.5772/53902

  • Emerenciano M, Cuzon G, Arévalo M, Gaxiola G (2014) Biofloc technology in intensive broodstock farming of the pink shrimp Farfantepenaeus duorarum: spawning performance, biochemical composition and fatty acid profile of eggs. Aquac Res 45:1713–1726. https://doi.org/10.1111/are.12117

    Article  CAS  Google Scholar 

  • Emerenciano MGC, Martínez-Córdova LR, Martínez-Porchas M, Miranda-Baeza A (2017) Biofloc technology (BFT): a tool for water quality management in aquaculture. In: Tutu H (ed) water quality. INTECH, pp 91–109. https://doi.org/10.5772/66416

  • Fimbres-Acedo YE, Servín-Villegas R, Garza-Torres R, Endo M, Fitzsimmons KM, Emerenciano MGC, Magallón-Servín P, López-Vela M, Magallón-Barajas FJ (2020) Hydroponic horticulture using residual waters from Oreochromis niloticus aquaculture with biofloc technology in photoautotrophic conditions with Chlorella microalgae. Aquac Res:1–21. https://doi.org/10.1111/are.14779

  • Ghanekar A (2009) Biofloc reduces feed, filtration costs in recirculating shrimp nursery system. Global Aquaculture Alliance

    Google Scholar 

  • Goddek S, Delaide B, Mankasingh U, Ragnarsdottir KV, Jijakli H, Thorarinsdottir R (2015) Challenges of sustainable and commercial aquaponics. Sustainability (Switzerland) 7:4199–4224. https://doi.org/10.3390/su7044199

    Article  Google Scholar 

  • Goddek S, Joyce A, Wuertz S, Körner O, Bläser I, Reuter M, Keesman KJ (2019) Decoupled aquaponics systems. In: Goddek S, Joyce A, Kotzen B, Burnell GM (eds) Aquaponics Food Production Systems. Springer, pp 201–229. https://doi.org/10.1007/978-3-030-15943-6_8

  • Godoy LC, Odebrecht C, Ballester E, Martins TG, Wasielesky W (2012) Effect of diatom supplementation during the nursery rearing of Litopenaeus vannamei (Boone, 1931) in a heterotrophic culture system. Aquac Int 20:559–569. https://doi.org/10.1007/s10499-011-9485-1

    Article  Google Scholar 

  • Green BW (2006) Tilapia fingerling production systems. In: Lim C, Webster C (eds) Tilapias: biology, culture, and nutrition. Food Products Press, Binghamton, NY

    Google Scholar 

  • Guemez-Sorhouet E, Villarreal H, Racotta IS, Naranjo J, Mercier L (2019) Zootechnical and physiological responses of whiteleg shrimp (Litopenaeus vannamei) postlarvae reared in bioflocs and subjected to stress conditions during nursery phase. Aquac Res 50(4):1198–1211. https://doi.org/10.1111/are.13994

    Article  CAS  Google Scholar 

  • Ip YK, Chew SF (2010) Ammonia production, excretion, toxicity, and defense in fish: a review. Front Physiol 1:1–20. https://doi.org/10.3389/fphys.2010.00134

    Article  CAS  Google Scholar 

  • Kloas W, Groß R, Baganz D, Graupner J, Monsees H, Schmidt U, Staaks G, Suhl J, Tschirner M, Wittstock B, Wuertz S, Zikova A, Rennert B (2015) A new concept for aquaponic systems to improve sustainability, increase productivity, and reduce environmental impacts. Aquaculture Environment Interactions 7:179–192. https://doi.org/10.3354/aei00146

    Article  Google Scholar 

  • Kotzen B, Emerenciano MGC, Moheimani N, Burnell GM (2019) Aquaponics: alternative types and approaches. In: Goddek S, Joyce A, Kotzen B, Burnell GM (eds) Aquaponics food production systems. Springer, pp. 301–330. https://doi.org/10.1007/978-3-030-15943-6_12

  • Lennard W, Goddek S (2019) Aquaponics: The Basics. In: Goddek S, Joyce A, Kotzen B, Burnell GM (eds) Aquaponics Food Production Systems. Springer International Publishing, pp 113–143. https://doi.org/10.1007/978-3-030-15943-6_5

  • Lenz GL, Durigon EG, Lapa KR, Emerenciano MGC (2017) Produção de alface (Lactuca sativa) em efluentes de um cultivo de tilápias mantidas em sistema BFT em baixa salinidade. Bol Inst Pesca 43:614–630. https://doi.org/10.20950/1678-2305.2017v43n4p614

    Article  Google Scholar 

  • Luo G, Gao Q, Wang C, Liu W, Sun D, Li L, Tan H (2014) Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture 422–423:1–7. https://doi.org/10.1016/j.aquaculture.2013.11.023

    Article  Google Scholar 

  • Luo I, Xu J, Meng H (2020) Nitrate accumulation in biofloc aquaculture systems. Aquaculture 520:734675. https://doi.org/10.1016/j.aquaculture.2019.734675

    Article  CAS  Google Scholar 

  • Martínez-Córdova LR, Emerenciano M, Miranda-Baeza A, Martínez-Porchas M (2014) Microbial-based systems for aquaculture of fish and shrimp: an updated review. Rev Aquac 7:131–148. https://doi.org/10.1111/raq.12058

    Article  Google Scholar 

  • Martínez-Córdova LR, Martínez-Porchas M, Emerenciano MGC, Miranda-Baeza A, Gollas-Galván T (2016) From microbes to fish the next revolution in food production. Crit Rev Biotechnol 37:287–295. https://doi.org/10.3109/07388551.2016.1144043

    Article  CAS  PubMed  Google Scholar 

  • Martins GB, Tarouco F, Eduardo C, Berteaux R (2017) The utilization of sodium bicarbonate, calcium carbonate or hydroxide in biofloc system: water quality, growth performance and oxidative stress of Nile tilapia (Oreochromis niloticus). Aquaculture 468:10–17. https://doi.org/10.1016/j.aquaculture.2016.09.046

    Article  CAS  Google Scholar 

  • Ngo TDT, Konnerup D, Brix H (2017) Effects of recirculation rates on water quality and Oreochromis niloticus growth in aquaponic systems. Aquac Eng 78:95–104. https://doi.org/10.1016/j.aquaeng.2017.05.002

    Article  Google Scholar 

  • Palm HW, Bissa K, Knaus U (2014) Significant factors affecting the economic sustainability of closed aquaponic systems – part II: fish and plant growth. AACL Bioflux 7:162–175

    Google Scholar 

  • Palm HW, Knaus U, Appelbaum S, Goddek S, Strauch SM, Vermeulen T, Haїssam Jijakli M, Kotzen B (2018) Towards commercial aquaponics: a review of systems, designs, scales and nomenclature. Aquac Int 26:813–842. https://doi.org/10.1007/s10499-018-0249-z

    Article  Google Scholar 

  • Palm HW, Knaus U, Appelbaum S, Strauch SM, Kotzen B (2019) Coupled aquaponics systems. In: Goddek S, Joyce A, Kotzen B, Burnell GM (eds) Aquaponics food production systems. Springer, pp 201–230. https://doi.org/10.1007/978-3-030-15943-6_7

  • Pantanella E, Cardarelli M, Colla G, Rea E, Marcucci A (2012) Aquaponics vs hydroponics: production and quality of lettuce crop. Acta Hortic 927:887–894. https://doi.org/10.17660/ActaHortic.2012.927.109

    Article  Google Scholar 

  • Pinheiro I, Carneiro RFS, Vieira FN, Gonzaga LV, Fett R, Costa ACO, Magallón-Barajas FJ, Seiffert WQ (2020) Aquaponic production of Sarcocornia ambigua and Pacific white shrimp in biofloc system at different salinities. Aquaculture 519:734918. https://doi.org/10.1016/j.aquaculture.2019.734918

    Article  CAS  Google Scholar 

  • Pinho SM, Molinari D, Mello GL, Fitzsimmons K, Emerenciano MGC (2017) Effluent from a biofloc technology (BFT) tilapia culture on the aquaponics production of different lettuce varieties. Ecol Eng 103:146–153. https://doi.org/10.1016/j.ecoleng.2017.03.009

    Article  Google Scholar 

  • Quintã R, Santos R, Thomas DN, Le Vay L (2015) Growth and nitrogen uptake by Salicornia europaea and Aster tripolium in nutrient conditions typical of aquaculture wastewater. Chemosphere 120:414–421. https://doi.org/10.1016/j.chemosphere.2014.08.017

    Article  CAS  PubMed  Google Scholar 

  • Rahman SSA (2010) Effluent waste characterization of intensive tilapia culture units and its application in an integrated lettuce aquaponic production facility. A thesis presented at graduate Faculty of Auburn University (degree of master of science) Auburn, Alabama, USA, December 2010

  • Rakocy JE (2012) Aquaponics—integrating fish and plant culture. In: Tidwell JH (ed) Aquaculture production systems, 1st edn. Wiley-Blackwell, Oxford, pp 343–386

    Google Scholar 

  • Ramos-Rodríguez E, Conde-Porcuna JM (2003) Nutrient limitation on a planktonic rotifer: life history consequences and starvation resistance. Limnol Oceanogr 48:933–938. https://doi.org/10.4319/lo.2003.48.2.0933

    Article  Google Scholar 

  • Ray AJ, Seaborn G, Leffler JW, Wilde SB, Lawson A, Browdy CL (2010) Characterization of microbial communities in minimal-exchange, intensive aquaculture systems and the effects of suspended solids management. Aquaculture 310:130–138. https://doi.org/10.1016/j.aquaculture.2010.10.019

    Article  Google Scholar 

  • Rocha AF, Biazzetti ML, Stech MR, Silva RP (2017) Lettuce production in aquaponic and biofloc systems with silver catfish Rhamdia quelen. Boletim do Instituo de Pesca 44:64–73. https://doi.org/10.20950/1678-2305.2017.64.73

    Article  Google Scholar 

  • Santos MHV, Araújo AC, Santos DMR, Lima NS, Lima CLC, Santiago AD (2010) Uso da manipueira como fonte de potássio na cultura da alface (Lactuca sativa L.) cultivada em casa-de-vegetação. Acta Scientiarum Agronomy 32(4):729–733. https://doi.org/10.4025/actasciagron.v32i4.4819

  • Samocha TM (2019) Sustainable biofloc systems for marine shrimp. Academic Press

  • Sgnaulin T, Durigon EG, Pinho SM, Jerônimo GT, Lopes DLA, Emerenciano MGC (2020) Nutrition of genetically improved farmed tilapia (GIFT) in biofloc technology system: optimization of digestible protein and digestible energy levels during nursery phase. Aquaculture 521:734998. https://doi.org/10.1016/j.aquaculture.2020.734998

    Article  CAS  Google Scholar 

  • Sokal R, Rohlf J (1995) Biometry, the principles and practice of statistics in biological research. W H Freeman, New York

    Google Scholar 

  • Sousa AA, Pinho SM, Rombenso AN, Mello GL, Emerenciano MGC (2018) Pizzeria by-product: a complementary feed source for Nile tilapia (Oreochromis niloticus) raised in biofloc technology? Aquaculture 501:359–367. https://doi.org/10.1016/J.AQUACULTURE.2018.11.055

    Article  Google Scholar 

  • Tyson RV, Simonne EH, White JM, Lamb EM (2004) Reconciling water quality parameters impacting nitrification in aquaponics: the pH levels. Proceedings of the Florida State Horticultural Society 117:79–83

    Google Scholar 

  • Wongkiew S, Hu Z, Chandran K, Lee KW, Khanal SK (2017) Nitrogen transformations in aquaponic systems: a review. Aquaculture Engineering 76:9–19. https://doi.org/10.1016/j.aquaeng.2017.01.004

    Article  Google Scholar 

  • Zou Y, Hu Z, Zhang J, Guimbaud C, Wang Q, Fang Y (2016a) Effect of seasonal variation on nitrogen transformations in aquaponics of northern China. Ecol Eng 94:30–36. https://doi.org/10.1016/j.ecoleng.2016.05.063

  • Zou Y, Hu Z, Zhang J, Xie H, Guimbaud C, Fang Y (2016b) Effects of pH on nitrogen transformations in media-based aquaponics. Bioresour Technol 210:81–87. https://doi.org/10.1016/j.biortech.2015.12.079

Download references

Acknowledgments

The authors thank the São Paulo Research Foundation (FAPESP grant #2016/14966-2) for the Master’s scholarship provided to S.M.P. and to the Scientific and Technological Research Support Foundation of Santa Catarina State—FAPESC (project numbers 2013TR3406 and 2015TR543). Thanks are also due to all LAQ (UDESC) and CAUNESP (Unesp) staff for technical support. M.C.P. is recipient of a research fellowship from the Brazilian National Council for Scientific and Technological Development (CNPq/Brazil, grant 311108/2017-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Célia Portella.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable institutional guidelines for the care and use of animals were followed by the authors. The experiment was carried out under the authorization of the Committee on Ethics in Animal Use of the Faculty of Agrarian and Veterinarian Sciences of the São Paulo State University (CEUA—Protocol No. 17615/16).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Aquaponics and Biofloc

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinho, S.M., David, L.H.C., Goddek, S. et al. Integrated production of Nile tilapia juveniles and lettuce using biofloc technology. Aquacult Int 29, 37–56 (2021). https://doi.org/10.1007/s10499-020-00608-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-020-00608-y

Keywords

Navigation