Skip to main content
Log in

CESAM: a free code for stellar evolution calculations

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The cesam code is a consistent set of programs and routines which perform calculations of 1D quasi-hydrostatic stellar evolution including microscopic diffusion of chemical species and diffusion of angular momentum. The solution of the quasi-static equilibrium is performed by a collocation method based on piecewise polynomials approximations projected on a B-spline basis; that allows stable and robust calculations, and the exact restitution of the solution, not only at grid points, even for the discontinuous variables. Other advantages are the monitoring by only one parameter of the accuracy and its improvement by super-convergence. An automatic mesh refinement has been designed for adjusting the localisations of grid points according to the changes of unknowns. For standard models, the evolution of the chemical composition is solved by stiffly stable schemes of orders up to four; in the convection zones mixing and evolution of chemical are simultaneous. The solution of the diffusion equation employs the Galerkin finite elements scheme; the mixing of chemicals is then performed by a strong turbulent diffusion. A precise restoration of the atmosphere is allowed for.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelberger, E., et al.: Solar fusion rates. Rev. Mod. Phys. 70, 1265–1291 (1998)

    Article  ADS  Google Scholar 

  • Alécian, G., Michaud, G.: About diffusivity, radiative viscosity and particles transport. Astron. Astrophys. 431, 1–4 (2005)

    Article  ADS  Google Scholar 

  • Alexander, D.R., Ferguson, J.W.: Low-temperature Rosseland opacities. Astrophys. J. 437, 879 (1994)

    Article  ADS  Google Scholar 

  • Anders, E., Grevesse, N.: Abundances of the elements—meteoritic and solar. Geochim. Cosmochim. Acta 53, 197–214 (1989)

    Article  ADS  Google Scholar 

  • Angulo, C., Arnould, M., Rayet, M., The NACRE collaboration: A compilation of charged-particle induced thermonuclear reaction rates. Nucl. Phys. A 656, 3–183 (1999)

    ADS  Google Scholar 

  • Asplund, M., Grevesse, N., Sauval, A.J.: In: Barnes, T.G. III, Bash, F.N. (eds.) Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis. ASP Conf. Ser., vol. 336, p. 25 (2005)

  • Bahcall, J.N., Pinsonneault, M.H., Wasserburg, G.J.: Solar models with helium and heavy-element diffusion. Rev. Mod. Phys. 67, 781 (1995)

    Article  ADS  Google Scholar 

  • Basu, S., Antia, H.M.: Seismic measurement of the depth of the solar convection zone. Mon. Not. R. Astron. Soc. 287, 189 (1997)

    ADS  Google Scholar 

  • Basu, S., Antia, H.M.: Constraining solar abundances using helioseismology. Astrophys. J. Lett. 606, L85 (2004)

    Article  ADS  Google Scholar 

  • Basu, S., Pinsonneault, M.H., Bahcall, J.H.: How much do helioseismological inferences depend on the assumed reference model? Astrophys. J. 529, 1084 (2000)

    Article  ADS  Google Scholar 

  • Böhm-Vitense, E.: Über die Wasserstoffkonvektionszone in Sternen verschiedener Effektivtemperaturen und Leuchtkräfte. Z. Astrophys. 46, 108 (1958)

    ADS  Google Scholar 

  • Boothroyd, A.I., Sackmann, I.-J.: Our Sun. IV. The standard model and helioseismology: Consequences of uncertainties in input physics and in observed solar parameters. Astrophys. J. 583, 1004 (2003)

    Article  ADS  Google Scholar 

  • Burgers, J.M.: Flow Equations for Composite Gases. Academic Press, New York (1969)

    MATH  Google Scholar 

  • Canuto, V.M., Mazzitelli, I.: Stellar turbulent convection—a new model and applications. Astrophys. J. 370, 295–311 (1991)

    Article  ADS  Google Scholar 

  • Canuto, V.M., Goldman, I., Mazzitelli, I.: Stellar turbulent convection—a self-consistent model. Astrophys. J. 473, 550 (1996)

    Article  ADS  Google Scholar 

  • Caughlan, G.R., Fowler, W.A.: Thermonuclear reaction rates V. At. Data Nucl. Data Tables 40, 284–334 (1988)

    Article  ADS  Google Scholar 

  • Chaboyer, B., Demarque, P., Guenther, D.B.: The pulsation properties of Procyon A. Astrophys. J. 525, L41–L44 (1999)

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard, J.: Computational procedures for GONG solar model project. Astronomisk Institut, Aarhus Universitet (1988)

  • Christensen-Dalsgaard, J., Dappen, W.: Solar oscillations and the equation of state. Astron. Astrophys. Rev. 342, 267–361 (1992)

    Article  ADS  Google Scholar 

  • Clayton, D.D.: Principles of Stellar Evolution and Nucleosynthesis. McGraw-Hill, New York (1968)

    Google Scholar 

  • Cox, A.N.: Allen’s Astrophysical Quantities. Springer, Berlin (2000)

    Google Scholar 

  • Cox, A.N., Guzik, J.A., Kidman, R.B.: Oscillations of solar models with internal element diffusion. Astrophys. J. 342, 1187–1206 (1989)

    Article  ADS  Google Scholar 

  • Cox, J.P., Giuli, R.T.: Principles of Stellar Structure, vols. I & II. Gordon & Breach, New York (1968)

    Google Scholar 

  • De Boor, C.: A Practical Guide to Splines, 3rd edn. Springer, Berlin (1978)

    MATH  Google Scholar 

  • Di Mauro, M.P.: Theoretical aspects of asteroseismology: small steps towards a golden future. In: Danesy, D. (ed.) Helio and Asteroseismology, Toward a Golden Future, New Haven, Connecticut, 14–16 July. Proceedings of the SOHO 14/GONG 2004 Workshop (ESA SP-559), p. 186 (2004)

  • Eggenberger, P., Carrier, F., Bouchy, F.: Models of Procyon A including seismic constraints. New Astron. 10, 195–208 (2005)

    Article  ADS  Google Scholar 

  • Eggleton, P.P.: The evolution of low mass stars. Mon. Not. R. Astron. Soc. 151, 351 (1971)

    ADS  Google Scholar 

  • Eggleton, P.P., Faulkner, J., Flannery, B.P.: An approximate equation of state for stellar material. Astron. Astrophys. 23, 325 (1973)

    ADS  Google Scholar 

  • Ferguson, J.W., Alexander, D.R., Allard, F., et al.: Low-temperature opacities. Astrophys. J. 623, 585 (2005)

    Article  ADS  Google Scholar 

  • Gabriel, M.: Influence of heavy element and rotationally induced diffusions on the solar models. Astron. Astrophys. 327, 771–778 (1997)

    ADS  Google Scholar 

  • Grevesse, N., Noels, A.: Cosmic abundances of the elements. In: Prantzos, N., Vangioni-Flam, E., Casse, M. (eds.) Origin and Evolution of the Elements, p. 14. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  • Grevesse, N., Sauval, A.J.: Standard solar composition. Space Sci. Rev. 85, 161–174 (1998)

    Article  ADS  Google Scholar 

  • Hairer, E., Wanner, G.: Solving Ordinary Differential Equations, vol. II. Springer, Berlin (1991)

    MATH  Google Scholar 

  • Henyey, L.G., Vardya, M.S., Bodenheimer, P.L.: Studies in stellar evolution. III. The calculation of model envelopes. Astrophys. J. 142, 841 (1965)

    Article  ADS  Google Scholar 

  • Iben, I.: Stellar evolution I. The approach to the main sequence. Astrophys. J. 141, 993–1018 (1965)

    Article  ADS  Google Scholar 

  • Iben, I., MacDonald, J.: The effect of diffusion due to gravity and due to composition gradients on the rate of oxygen burning in a cooling degenerate dwarf. Astrophys. J. 296, 540–553 (1985)

    Article  ADS  Google Scholar 

  • Iglesias, C.A., Rogers, F.J.: Updated opal opacities. Astrophys. J. 464, 943 (1996)

    Article  ADS  Google Scholar 

  • Kippenhahn, R., Weigert, A.: Stellar Structure and Evolution. Springer, Berlin (1991)

    Google Scholar 

  • Kurucz, R.L.: Atomic and molecular data for opacity calculations. Rev. Mex. Astron. Astrofís. 23, 45 (1992)

    ADS  Google Scholar 

  • Lebreton, Y., Monteiro, M.J.P.F.G., Montalbán, J., Baglin, A., Michel, E.: The CoRoT evolution and seismic tools activity. In: Astrophys. Space Sci. (CoRoT/ESTA Volume). Springer, Berlin (2007)

  • Lide, D.R., et al.: CRC Handbook of Chemistry and Physics, 75th edn. CRC Press, Boca Raton (1994)

    Google Scholar 

  • Mathis, S., Zahn, J.P.: Transport and mixing in the radiation zones of rotating stars. I. Hydrodynamical processes. Astron. Astrophys. 425, 229–242 (2004)

    Article  ADS  Google Scholar 

  • Mathis, S., Palacios, A., Zahn, J.P.: On shear-induced turbulence in rotating stars. Astron. Astrophys. 425, 243–247 (2004)

    Article  ADS  Google Scholar 

  • Michaud, G., Proffitt, C.R.: Particle transport processes. In: Baglin, A., Weiss, W.W. (eds.) Inside the Stars, San Francisco. ASP Conf. Ser., vol. 40, pp. 246–249 (1993)

  • Mihalas, D.: Stellar Atmospheres. Freeman, New York (1978)

    Google Scholar 

  • Mihalas, D., Weibel-Mihalas, B.: Foundations of Radiation Hydrodynamics. Oxford University Press, Oxford (1984)

    MATH  Google Scholar 

  • Mihalas, D., Dappen, W., Hummer, D.G.: The equation of state for stellar envelopes. II. Algorithm and selected results. Astrophys. J. 331, 815–825 (1988)

    Article  ADS  Google Scholar 

  • Mitler, H.E.: Thermonuclear ion–electron screening at all densities. I. Static solution. Astrophys. J. 212, 513–532 (1997)

    Article  ADS  Google Scholar 

  • Morel, P.: CESAM a code for stellar evolution calculations. Astron. Astrophys. Suppl. Ser. 124, 597–614 (1997)

    Article  ADS  Google Scholar 

  • Morel, P., Thévenin, F.: Atomic diffusion in stellar models of type earlier than G. Astron. Astrophys. 390, 611–620 (2002)

    Article  ADS  Google Scholar 

  • Morel, P., van’t Veer, C., Provost, J., Berthomieu, G., Castelli, F., Cayrel, R., Lebreton, Y.: Incorporating the atmosphere in stellar structure models: the solar case. Astron. Astrophys. 286, 91–102 (1994)

    ADS  Google Scholar 

  • Morel, P., Pichon, B., Provost, J., Berthomieu, G.: Solar models and NACRE thermonuclear reaction rates. Astron. Astrophys. 350, 275 (1999)

    ADS  Google Scholar 

  • Palacios, A., Talon, S., Charbonnel, C., Forestini, M.: Rotational mixing in low mass stars. I. Effects of the μ gradient in main sequence and sub-giant Pop I stars. Astron. Astrophys. 399, 603–617 (2003)

    Article  ADS  Google Scholar 

  • Paquette, C., Pelletier, C., Fontaine, G., Michaud, G.: Diffusion coefficients for stellar plasmas. Astrophys. J. Suppl. Ser. 61, 177–195 (1986)

    Article  ADS  Google Scholar 

  • Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  • Proffit, C.R., Michaud, G.: Diffusion and mixing of lithium and helium in population II dwarfs. Astrophys. J. 371, 584–601 (1991)

    Article  ADS  Google Scholar 

  • Provost, J., Berthomieu, G., Morel, P.: Low frequency p- and g-mode solar oscillations. Astron. Astrophys. 353, 775 (2000)

    ADS  Google Scholar 

  • Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (1994)

    MATH  Google Scholar 

  • Rogers, F.J., Nayfonov, A.: Updated and expanded OPAL equation-of-state tables: Implications for helioseismology. Astrophys. J. 576, 1064 (2002)

    Article  ADS  Google Scholar 

  • Salpeter, E.E.: Energy and pressure of a zero-temperature plasma. Astrophys. J. 134, 669 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  • Samadi, R., Kupka, F., Goupil, M.J., Lebreton, Y., van’t Veer-Menneret, C.: Influence of local treatments of convection upon solar p-mode excitation rates. Astron. Astrophys. 445, 233–242 (2006)

    Article  ADS  Google Scholar 

  • Schumaker, L.: Spline Functions: Basic Theory. Wiley, New York (1981)

    MATH  Google Scholar 

  • Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, Berlin (1979)

    MATH  Google Scholar 

  • Talon, S., Zahn, J.P., Maeder, A., Meynet, G.: Rotational mixing in early-type stars: the main-sequence evolution of a 9M  star. Astron. Astrophys. 322, 209–217 (1997)

    ADS  Google Scholar 

  • Thomas, L.H.: The radiation field in a fluid in motion. Q. J. Math. 1, 239 (1930)

    Google Scholar 

  • Thoul, A.A., Bahcall, J.N., Loeb, A.: Element diffusion in the solar interior. Astrophys. J. 421, 828–842 (1994)

    Article  ADS  Google Scholar 

  • Turcotte, S., Richer, J., Michaud, G.: Consistent evolution of F stars: diffusion, radiative accelerations, and abundance anomalies. Astrophys. J. 504, 559 (1998)

    Article  ADS  Google Scholar 

  • van’t Veer-Menneret, C., Megessier, C.: Effective temperature of A and F stars from Balmer line profiles, and the Infrared Flux Method. Astron. Astrophys. 309, 879 (1996)

    ADS  Google Scholar 

  • Zaatri, A., Provost, J., Berthomieu, G., Morel, P., Corbard, T.: Sensitivity of the low degree solar oscillations to the change of solar abundances. Astron. Astrophys. 269, 1145 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Lebreton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morel, P., Lebreton, Y. CESAM: a free code for stellar evolution calculations. Astrophys Space Sci 316, 61–73 (2008). https://doi.org/10.1007/s10509-007-9663-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10509-007-9663-9

Keywords

PACS

Navigation