Skip to main content
Log in

Unimodular mimetic \(F(R)\) inflation

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

We propose the unimodular-mimetic \(F(R)\) gravity theory, to resolve cosmological constant problem and dark matter problem in a unified geometric manner. We demonstrate that such a theory naturally admits accelerating universe evolution. Furthermore, we construct unimodular-mimetic \(F(R)\) inflationary cosmological scenarios compatible with the Planck and BICEP2/Keck-Array observational data. We also address the graceful exit issue, which is guaranteed by the existence of unstable de Sitter vacua.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For example, for \(d=10^{-6}\) and \(f=100\), the parameter \(\mu_{2}\) reads \(\mu_{2}=1.3\times10^{6}\).

References

Download references

Acknowledgements

This work is supported in part by MINECO (Spain), project FIS2013-44881 (S.D. Odintsov) and partly by Min. of Education and Science of Russia (S.D. Odintsov and V.K. Oikonomou).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Oikonomou.

Appendix: Explicit forms of the mimetic potential and Lagrange multipliers

Appendix: Explicit forms of the mimetic potential and Lagrange multipliers

Here we present the explicit forms of the mimetic potential and of the Lagrange multipliers for various cases appearing in the main text of the paper. We start off with the cosmological evolution (25), in which case the mimetic potential reads,

$$\begin{aligned}& V(t=\phi) \\& \quad= \bigl(27 t^{7} (1+w)^{5} (3+2 w) (4+3 w) (5+4 w) \\& \qquad{}\times (6+5 w) (7+6 w) (8+7 w) \bigr)^{-1} \\& \qquad{} -8 \bigl(-8 d (1-3 w)^{2} (3+2 w) (4+3 w) (5+4 w) \\& \qquad{}\times \bigl(45 t^{2} (1+w)^{2} (7+6 w) (8+7 w) \\& \qquad{}-3 t (6+5 w) (8+7 w) (9+7 w) \\& \qquad{} -2 (6+5 w) (7+6 w) (269+270 w) \bigr) \\& \qquad{}+t^{2} (1+w)^{2} (7+6 w) (8+7 w) \\& \qquad{}\times \bigl(9 t^{3} w (1+w)^{2} (4+3 w) \\& \qquad{}\times(5+4 w) (6+5 w)-2 f \bigl(-3+w (7+6 w) \bigr) \\& \qquad{}\times \bigl(-12 t (4+3 w) (6+5 w)+27 t^{2} (1+w)^{2} (5+4 w) \\& \qquad{}\times(6+5 w)-2 (4+3 w) (5+4 w) (107+108 w) \bigr) \bigr) \bigr), \\& \end{aligned}$$
(55)

and in addition, by using Eq. (57), the corresponding unimodular Lagrange multiplier function \(\lambda(t)\) reads,

$$\begin{aligned} \lambda(t) =& \bigl(27 t^{7} (1+w)^{6} (3+2 w) (4+3 w) (5+4 w) \\ &{}\times(6+5 w) (7+6 w) (8+7 w) \bigr) \\ &{} - \bigl(8 \bigl(8 d (1-3 w)^{2} \bigl(60+133 w+98 w^{2}+24 w^{3} \bigr) \\ &{}\times \bigl(45 t^{2} (1+w)^{3} -2 \bigl(11298+41737 w+57679 w^{2} \\ &{}+35340 w^{3}+8100 w^{4} \bigr) \\ &{} +t \bigl(21216+104644 w+205616 w^{2}+201009 w^{3} \\ &{} +97725 w^{4}+18900 w^{5} \bigr)\bigr) \\ &{}\times t^{2} (1+w)^{2} \bigl(56+97 w+42 w^{2} \bigr) \\ &{}\times \bigl(9 t^{3} w (1+w)^{2} \bigl(240+692 w \\ &{}+740 w^{2}+347 w^{3}+60 w^{4} \bigr) f \bigl(-3+7 w+6 w^{2} \bigr) \\ &{}\times \bigl(27 t^{2} (1+w)^{3} \bigl(30+49 w+20 w^{2} \bigr) \\ &{}-2 \bigl(2140+7617 w \\ &{}+10109 w^{2}+5928 w^{3}+1296 w^{4} \bigr) \\ &{} +3 t \bigl(1224+5898 w+11595 w^{2}+11423 w^{3} \\ &{}+5586 w^{4}+1080 w^{5} \bigr) \bigr) \bigr) \bigr) \bigr) \end{aligned}$$
(56)

Correspondingly, by combining Eqs. (55) and (56), the mimetic Lagrange multiplier \(\eta\) reads,

$$\begin{aligned} \eta(t) =& \bigl(27 t^{7} (1+w)^{6} (3+2 w) (4+3 w) (5+4 w) \\ &{}\times (6+5 w) (7+6 w) (8+7 w) \bigr)^{-1} \\ &{} - \bigl(4 \bigl(8 d (1-3 w)^{2} (3+2 w) (4+3 w) (5+4 w) \\ &{}\times\bigl(45 t^{2} (1+w)^{3} (7+6 w)(8+7 w) \\ &{}-2 (1+w) (6+5 w) (7+6 w) (269+270 w) \\ &{} +3 t (6+5 w) (8+7 w) \\ &{}\times \bigl(236+w \bigl(663+5 w (121+36 w) \bigr) \bigr) \bigr) \\ &{}\times t^{2} (1+w)^{2} (7+6 w) (8+7 w) \\ &{}\times \bigl(-9 t^{3} w (1+w)^{2} (4+3 w) \\ &{}\times(5+4 w) (6+5 w) (7+5 w) \\ &{}+2 f \bigl(-3+w (7+6 w) \bigr) \\ &{}\times \bigl(27 t^{2} (1+w)^{3} (5+4 w) (6+5 w) \\ &{} +6 t (4+3 w) (6+5 w) \\ &{}\times\bigl(58+w \bigl(161+w (137+36 w) \bigr) \bigr) \bigr) \bigr)\bigr)\bigr) \end{aligned}$$
(57)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odintsov, S.D., Oikonomou, V.K. Unimodular mimetic \(F(R)\) inflation. Astrophys Space Sci 361, 236 (2016). https://doi.org/10.1007/s10509-016-2826-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-016-2826-9

Keywords

Navigation