Skip to main content

Advertisement

Log in

Reprogramming of Human Retinal Pigment Epithelial Cells under the Effect of bFGF In Vitro

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied the effect of bFGF on human retinal pigment epithelial cells in vitro In ARPE-19 cells, enhanced expression of KLF4 mRNA and reduced expression of PAX6, MITF, and OTX2 mRNA specific for retinal pigment epithelium were observed after bFGF application. The expression of KLF4 mRNA peaked in 72 h after bFGF application and then sharply decreased, which was accompanied by a 3-fold increase in TUBB3 mRNA expression (neuronal marker). Immunocytochemical analysis showed that in the presence of bFGF, some cells retained epithelial properties and showed positive staining for connexin-43, while others had long axon-like processes and demonstrated positive staining for βIII-tubulin, which attests to their neuronal transdifferentiation. Despite the prevalence of the epithelial properties, ARPE-19 cells under the influence of bFGF can show proneuronal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuznetsova AV, Milyushina LA, Mikaelian AS, Zinovieva RD, Grigoryan EN, Aleksandrova MA. Dedifferentiation of adult human retinal pigment epithelial cells in vitro. Mol. Med. 2010;(6):23-29. Russian.

  2. Akrami H, Soheili Z.S, Khalooghi K, Ahmadieh H, Rezaie-Kanavi M, Samiei S, Davari M, Ghaderi S, Sanie-Jahromi F. Retinal pigment epithelium culture;a potential source of retinal stem cells. J. Ophthalmic Vis. Res. 2009;4(3):134-141.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Azuma N, Tadokoro K, Asaka A, Yamada M, Yamaguchi Y, Handa H, Matsushima S, Watanabe T, Kohsaka S, Kida Y, Shiraishi T, Ogura T, Shimamura K, Nakafuku M. The Pax6 isoform bearing an alternative spliced exon promotes the development of the neural retinal structure. Hum. Mol. Genet. 2005;14(6):735-745.

    Article  CAS  PubMed  Google Scholar 

  4. Bharti K, Nguyen MT, Skuntz S, Bertuzzi S, Arnheiter H. The other pigment cell: specification and development of the pigmented epithelium of the vertebrate eye. Pigment Cell Res. 2006;19(5):380-394.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Carr AJ, Vugler AA, Yu L, Semo M, Coffey P, Moss SE, Greenwood J. The expression of retinal cell markers in human retinal pigment epithelial cells and their augmentation by the synthetic retinoid fenretinide. Mol. Vis. 2011;17:1701-1715.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen S, Fariss RN, Kutty RK, Nelson R, Wiggert B. Fenretinide-induced neuronal differentiation of ARPE-19 human retinal pigment epithelial cells is associated with the differential expression of Hsp70, 14-3-3, pax-6, tubulin beta-III, NSE, and bag-1 proteins. Mol. Vis. 2006;12:1355-1363.

    CAS  PubMed  Google Scholar 

  7. Dunn KC, Aotaki-Keen AE, Putkey FR, Hjelmeland LM. ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Exp. Eye Res. 1996;62(2):155-169.

    Article  CAS  PubMed  Google Scholar 

  8. Eguizabal C, Montserrat N, Veiga A, Izpisua Belmonte JC. Dedifferentiation, transdifferentiation, and reprogramming: future directions in regenerative medicine. Semin. Reprod. Med. 2013;31(1):82-94.

    Article  PubMed  Google Scholar 

  9. Fang J, Shaw PX, Wang Y, Goldberg JL. Krüppel-Like Factor 4 (KLF4) is not required for retinal cell differentiation. eNeuro. 2016;3(1):pii: ENEURO.0117-15.2016. doi: https://doi.org/10.1523/ENEURO.0117-15.2016.

  10. Grigorian EN. Competence factors of retinal pigment epithelium cells for reprogramming in the neuronal direction during retinal regeneration in newts. Izv. Akad. Nauk. Ser. Biol. 2015;(1):5-16.

    Google Scholar 

  11. Grigoryan EN, Markitantova YV, Avdonin PP, Radugina EA. Study of regeneration in amphibians in age of molecular-genetic approaches and methods. Genetika. 2013;49(1):55-72.

    CAS  PubMed  Google Scholar 

  12. Kojima A, Nakahama K, Ohno-Matsui K, Shimada N, Mori K, Iseki S, Sato T, Mochizuki M, Morita I. Connexin 43 contributes to differentiation of retinal pigment epithelial cells via cyclic AMP signaling. Biochem. Biophys. Res. Commun. 2008;366(2):532-538.

    Article  CAS  PubMed  Google Scholar 

  13. Kuznetsova AV, Aleksandrova MA, Kurinov AM, Chentsova EV, Makarov P.V. Plasticity of adult human retinal pigment epithelial cells. Int. J. Clin. Exp. 2016;9(11):20 892-20 906.

    Google Scholar 

  14. Kuznetsova AV, Aleksandrova MA. Heterogeneity of retinal pigment epithelial cells from adult human eye in different culturing systems. Bull. Exp. Biol. Med. 2017;162(4):569-577.

    Article  CAS  PubMed  Google Scholar 

  15. Kuznetsova AV, Kurinov AM, Aleksandrova MA. Cell models to study regulation of cell transformation in pathologies of retinal pigment epithelium. J. Ophthalmol. 2014;2014. ID 801787. doi: https://doi.org/10.1155/2014/801787.

  16. Lotz S, Goderie S, Tokas N, Hirsch SE, Ahmad F, Corneo B, Le S, Banerjee A, Kane RS, Stern JH, Temple S, Fasano CA. Sustained levels of FGF2 maintain undifferentiated stem cell cultures with biweekly feeding. PLoS One. 2013;8(2):e56289. doi: https://doi.org/10.1371/journal.pone.0056289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Luz-Madrigal A, Grajales-Esquivel E, McCorkle A, DiLorenzo AM, Barbosa-Sabanero K, Tsonis PA, Del Rio-Tsonis K. Reprogramming of the chick retinal pigmented epithelium after retinal injury. BMC Biol. 2014;12:28. doi: https://doi.org/10.1186/1741-7007-12-28.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Martinez-Morales JR, Del Bene F, Nica G, Hammerschmidt M, Bovolenta P, Wittbrodt J. Differentiation of the vertebrate retina is coordinated by an FGF signaling center. Dev. Cell. 2005;8(4):565-574.

    Article  CAS  PubMed  Google Scholar 

  19. Milyushina LA, Kuznetsova AV, Grigoryan EN, Aleksandrova MA. Phenotypic plasticity of retinal pigment epithelial E. V. Shafei, A. M. Kurinov, et al. cells from adult human eye in vitro. Bull. Exp. Biol. Med. 2011;151(4):506-511.

    CAS  Google Scholar 

  20. Milyushina LA, Poltavtseva RA, Marei MV, Podgornyi OV, Sukhikh GT, Aleksandrova MA. In vitro phenotypic modification of pigmented epithelium cells from human eye at early stages of development. Bull. Exp. Biol. Med. 2009;148(1):113-119.

    Article  CAS  PubMed  Google Scholar 

  21. Milyushina LA, Verdiev BI, Kuznetsova AV, Aleksandrova MA. Expression of multipotent and retinal markers in pigment epithelium of adult human in vitro. Bull. Exp. Biol. Med. 2012;153(1):157-162.

    Article  CAS  PubMed  Google Scholar 

  22. Mochii M, Mazaki Y, Mizuno N, Hayashi H, Eguchi G. Role of Mitf in differentiation and transdifferentiation of chicken pigmented epithelial cell. Dev. Biol. 1998;193(1):47-62.

    Article  CAS  PubMed  Google Scholar 

  23. Pittack C, Grunwald GB, Reh TA. Fibroblast growth factors are necessary for neural retina but not pigmented epithelium differentiation in chick embryos. Development. 1997;124(4):805-816.

    CAS  PubMed  Google Scholar 

  24. Sakaguchi DS, Janick LM, Reh TA. Basic fibroblast growth factor (FGF-2) induced transdifferentiation of retinal pigment epithelium: generation of retinal neurons and glia. Dev. Dyn. 1997;209(4):387-398.

    Article  CAS  PubMed  Google Scholar 

  25. Salero E, Blenkinsop TA, Corneo B, Harris A, Rabin D, Stern JH, Temple S. Adult human RPE can be activated into a multipotent stem cell that produces mesenchymal derivatives. Cell Stem Cell. 2012;10(1):88-95.

    Article  CAS  PubMed  Google Scholar 

  26. Schwegler JS, Knorz MC, Akkoyun I, Liesenhoff H. Basic, not acidic fibroblast growth factor stimulates proliferation of cultured human retinal pigment epithelial cells. Mol. Vis. 1997;3:10.

    CAS  PubMed  Google Scholar 

  27. Sparrow JR, Hicks D, Hamel CP. The retinal pigment epithelium in health and disease. Curr. Mol. Med. 2010;10(9):802-823.

    Article  CAS  PubMed  Google Scholar 

  28. Taranova OV, Magness ST, Fagan BM, Wu Y, Surzenko N, Hutton SR, Pevny LH. SOX2 is a dose-dependent regulator of retinal neural progenitor competence. Genes Dev. 2006;20(9):1187-1202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yan RT, He L, Zhan W, Wang SZ. Induction of ectopic retinalike tissue by transgenic expression of neurogenin. PLoS One. 2015;10(1):e0116171. doi: https://doi.org/10.1371/journal.pone.0116171.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhao S, Thornquist SC, Barnstable CJ. In vitro transdifferentiation of embryonic rat retinal pigment epithelium to neural retina. Brain Res. 1995;677(2):300-310.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Aleksandrova.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 2, pp. 128-136, June, 2017

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafei, E.V., Kurinov, A.M., Kuznetsova, A.V. et al. Reprogramming of Human Retinal Pigment Epithelial Cells under the Effect of bFGF In Vitro . Bull Exp Biol Med 163, 574–582 (2017). https://doi.org/10.1007/s10517-017-3852-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-017-3852-5

Key Words

Navigation