Skip to main content
Log in

Telomere length dynamics differ in foetal and early post-natal human leukocytes in a longitudinal study

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Haemopoietic stem cells (HSC) undergo a process of self renewal to constantly maintain blood cell turnover. However, it has become apparent that adult HSC lose their self-renewal ability with age. Telomere shortening in peripheral blood leukocytes has been seen to occur with age and it has been associated with loss of HSC proliferative capacity and cellular ageing. In contrast foetal HSC are known to have greater proliferative capacity than post-natal stem cells. However it is unknown whether they undergo a similar process of telomere shortening. In this study we show a more accentuated rate of telomere loss in leukocytes from pre term infants compared to human foetuses of comparable age followed longitudinally for 8–12 weeks in a longitudinal study. Our results point to a difference in HSC behaviour between foetal and early postnatal life which is independent of age but may be influenced by events at birth itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adelman DM, Maltepe E, Simon MC (1999) Multilineage embryonic hematopoiesis requires hypoxic ARNT activity. Genes Dev 13:2478–2483. doi:10.1101/gad.13.19.2478

    Article  PubMed  CAS  Google Scholar 

  • Adelman DM, Gertsenstein M, Nagy A, Simon MC, Maltepe E (2000) Placental cell fates are regulated in vivo by HIF-mediated hypoxia responses. Genes Dev 14:3191–3203. doi:10.1101/gad.853700

    Article  PubMed  CAS  Google Scholar 

  • Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ, Bellantuono I (2004) Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 22(5):675–682

    Article  PubMed  CAS  Google Scholar 

  • Bellantuono I, Keith WN (2007) Stem cell ageing: does it occur and can we intervene? Expert Rev Mol Med 9:1–20. doi:10.1017/S146239940700049X

    Article  PubMed  Google Scholar 

  • Brummendorf TH, Dragowska W, Zijlmans J, Thornbury G, Lansdorp PM (1998) Asymmetric cell divisions sustain long-term hematopoiesis from single-sorted human fetal liver cells. J Exp Med 188:1117–1124. doi:10.1084/jem.188.6.1117

    Article  PubMed  CAS  Google Scholar 

  • Cipolleschi MG, Rovida E, Ivanovic Z, Praloran V, Olivotto M, Dello Sbarba P (2000) The expansion of murine bone marrow cells preincubated in hypoxia as an in vitro indicator of their marrow-repopulating ability. Leukemia 14:735–739. doi:10.1038/sj.leu.2401744

    Article  PubMed  CAS  Google Scholar 

  • Dando JS, Tavian M, Catelain C, Poirault S, Bennaceur-Griscelli A, Sainteny F, Vainchenker W, Peault B, Lauret E (2005) Notch/Delta4 interaction in human embryonic liver CD34+ CD38- cells: positive influence on BFU-E production and LTC-IC potential maintenance. Stem Cells 23:550–560. doi:10.1634/stemcells.2004-0205

    Article  PubMed  CAS  Google Scholar 

  • Frenck RW Jr, Blackburn EH, Shannon KM (1998) The rate of telomere sequence loss in human leukocytes varies with age. Proc Natl Acad Sci USA 95:5607–5610. doi:10.1073/pnas.95.10.5607

    Article  PubMed  CAS  Google Scholar 

  • Friedrich U, Schwab M, Griese EU, Fritz P, Klotz U (2001) Telomeres in neonates: new insights in fetal hematopoiesis. Pediatr Res 49:252–256. doi:10.1203/00006450-200102000-00020

    Article  PubMed  CAS  Google Scholar 

  • Ivanovic Z, Dello Sbarba P, Trimoreau F, Faucher JL, Praloran V (2000) Primitive human HPCs are better maintained and expanded in vitro at 1 percent oxygen than at 20 percent. Transfusion 40:1482–1488. doi:10.1046/j.1537-2995.2000.40121482.x

    Article  PubMed  CAS  Google Scholar 

  • Ivanovic Z, Belloc F, Faucher JL, Cipolleschi MG, Praloran V, Dello Sbarba P (2002) Hypoxia maintains and interleukin-3 reduces the pre-colony-forming cell potential of dividing CD34(+) murine bone marrow cells. Exp Hematol 30:67–73. doi:10.1016/S0301-472X(01)00765-2

    Article  PubMed  CAS  Google Scholar 

  • Kawanishi S, Oikawa S (2004) Mechanism of telomere shortening by oxidative stress. Ann N Y Acad Sci 1019:278–284. doi:10.1196/annals.1297.047

    Article  PubMed  CAS  Google Scholar 

  • Lansdorp PM (1995) Telomere length and proliferation potential of hematopoietic stem cells. J Cell Sci 108(Pt 1):1–6

    PubMed  CAS  Google Scholar 

  • Lansdorp PM, Dragowska W, Mayani H (1993) Ontogeny-related changes in proliferative potential of human hematopoietic cells. J Exp Med 178:787–791. doi:10.1084/jem.178.3.787

    Article  PubMed  CAS  Google Scholar 

  • Robertson JD, Gale RE, Wynn RF, Dougal M, Linch DC, Testa NG, Chopra R (2000) Dynamics of telomere shortening in neutrophils and T lymphocytes during ageing and the relationship to skewed X chromosome inactivation patterns. Br J Haematol 109:272–279. doi:10.1046/j.1365-2141.2000.01970.x

    Article  PubMed  CAS  Google Scholar 

  • Rufer N, Brummendorf TH, Kolvraa S, Bischoff C, Christensen K, Wadsworth L, Schulzer M, Lansdorp PM (1999) Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J Exp Med 190:157–167. doi:10.1084/jem.190.2.157

    Article  PubMed  CAS  Google Scholar 

  • Thornley I, Sutherland R, Wynn R, Nayar R, Sung L, Corpus G, Kiss T, Lipton J, Doyle J, Saunders F, Kamel-Reid S, Freedman M, Messner H (2002) Early hematopoietic reconstitution after clinical stem cell transplantation: evidence for stochastic stem cell behavior and limited acceleration in telomere loss. Blood 99:2387–2396. doi:10.1182/blood.V99.7.2387

    Article  PubMed  CAS  Google Scholar 

  • Vaughan JI, Manning M, Warwick RM, Letsky EA, Murray NA, Roberts IA (1998) Inhibition of erythroid progenitor cells by anti-Kell antibodies in fetal alloimmune anemia. N Engl J Med 338:798–803. doi:10.1056/NEJM199803193381204

    Article  PubMed  CAS  Google Scholar 

  • Wynn RF, Cross MA, Hatton C, Will AM, Lashford LS, Dexter TM, Testa NG (1998) Accelerated telomere shortening in young recipients of allogeneic bone-marrow transplants. Lancet 351:178–181. doi:10.1016/S0140-6736(97)08256-1

    Article  PubMed  CAS  Google Scholar 

  • Yui J, Chiu CP, Lansdorp PM (1998) Telomerase activity in candidate stem cells from fetal liver and adult bone marrow. Blood 91:3255–3262

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Bruno Peault, Thomas Von Zglinicki and Ian Thornley for critical reading of the manuscript and helpful discussion. We would like to thank Caroline Wellings, Sue Callan and Joan Kelly for their assistance in patient recruitment to the study and Melissa Baxter, for expert technical assistance with the Southern blotting technique. This study was supported by Royal Manchester Children’s Hospital Endowment Fund. D.K.H. was a Kay Kendall Leukaemia Fund Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilaria Bellantuono.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10522_2008_9194_MOESM1_ESM.ppt

Analysis of mTRF changes of the same sample run in 3 series of 4–5 adjacent lanes on two different gels to determine the mTRF variability associated with the technique (PPT 31 kb)

10522_2008_9194_MOESM2_ESM.ppt

Representative examples of telomere gels for (A) an alloimmunised foetus. mTRF (kb) for each sample is indicated at the top of each lane. (B) a gel where the same sample was run to assess the variability of the technique (PPT 278 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmes, D.K., Bellantuono, I., Walkinshaw, S.A. et al. Telomere length dynamics differ in foetal and early post-natal human leukocytes in a longitudinal study. Biogerontology 10, 279–284 (2009). https://doi.org/10.1007/s10522-008-9194-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-008-9194-y

Keywords

Navigation