Skip to main content

Advertisement

Log in

Genetic Diversity and Genetic Structure of an Endangered Species, Trillium tschonoskii

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

The genetic diversity and genetic structure of Trillium tschonoskii (Maxim) were investigated using amplified fragment length polymorphism markers. Eight primer combinations were carried out on 105 different individuals sampled from seven populations. Of the 619 discernible DNA fragments generated, 169 (27.3%) were polymorphic. The percentage of polymorphic bands within populations ranged from 4.52 to 10.50. Genetic diversity (HE) within populations ranged from 0.0130 to 0.0379, averaging 0.0536 at the species level. Genetic differentiation among populations was detected based on Nei's genetic diversity analysis (53.03%) and analysis of molecular variance (AMOVA) (52.43%). AMOVA indicated significant genetic differentiation among populations (52.43% of the variance) and within populations (47.57% of the variance) (p < 0.0002). Gene flow was low (0.4429) among populations. Species breeding system and limited gene flow among populations are plausible reasons for the high genetic differentiation observed for this species. We propose an appropriate strategy for conserving the genetic resources of T. tschonoskii in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ajmone-Marsan, P., Negrini, R., Crepaldi, P., Milanesi, E., Gorni, C., Valentini, A., and Cicogna, M. (2001). Assessing genetic diversity in Italian goat populations using AFLP markers. Anim. Genet. 32:281–288.

    Article  PubMed  Google Scholar 

  • Avise, J. C., and Hamrick, J. L. (1996). Conservation Genetics, Case Histories From Nature. Chapman and Hall, New York, pp. 1–9.

    Google Scholar 

  • Barrett, S. C. H., and Kohn, J. R. (1991). Genetics and evolutionary consequences of small population size in plants: Implications for conservation. In Falk, D. A., and Holsinger, K. E. (eds.), Genetics and Conservation of Rare Plants, Oxford University Press, New York, pp. 3–30.

    Google Scholar 

  • Curtis, J. M. R., and Taylor, E. B. (2004). The genetic structure of coastal giant salamanders (Dicamptodon tenebrosus) in a managed forest. Biol. Conserv. 115:45–54.

    Article  Google Scholar 

  • De Knijff, P., Denkers, F., van Swelm, N. D., and Kuiper, M. (2001). Genetic affinities within the herring gull Larus argentatus assemblage revealed by AFLP genotyping. J. Mol. Evol. 52:85–93.

    PubMed  Google Scholar 

  • Ellstrand, N. C., and Elam, D. R. (1993). Population genetics consequences of small population size: Implications for plant conservation. Ann. Rev. Ecol. Syst. 24:217–243.

    Article  Google Scholar 

  • Excoffier, L., Smouse, P. E., and Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Applications to human mitochondrial DNA restriction data. Genetics 131:479–491.

    PubMed  Google Scholar 

  • Folkertsma, R. T., Rouppe van der Voort, J. N., de Groot, K. E., van Zandvoort, P. M., Schots, A., Gommers, F. J., Helder, J., and Bakker, J. (1996). Gene pool similarities of potato cyst nematode populations assessed by AFLP analysis. Mol. Plant Microbe Interact. 9:47–54.

    PubMed  Google Scholar 

  • Francisco-Ortega, J., Santos-Guerra, A., Kim, S. C., and Crawford, D. J. (2000). Plant genetic diversity in the Canary Islands: A conservation perspective. Am. J. Bot. 87:909–909.

    PubMed  Google Scholar 

  • Frankel, O. H., Brown, A. H. D., and Burdon, J. J. (1995). The Conservation of Plant Biodiversity, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Fritsch, P., and Rieseberg, L. H. (1996). The use of random amplified polymorphic DNA (RAPD) in conservation genetics. In Smith, T. B., and Wayne, R. K. (eds.), Molecular Genetic Approaches in Conservation, Oxford University Press, New York, pp. 54–73.

    Google Scholar 

  • Fukuda, I., and Kozuka, Y. (1958). Evolution and variation in Trillium, 5: A list of chromosome composition in natural populations of Trillium kamtschaticum Pall. J. Fac. Sci. Hokkaido Univ. Ser. 6:273–319.

    Google Scholar 

  • Fu, L.-G. (1992). Plant Red Book of China: Rare Threatened Plant, Science Publishing House Press, Beijing, pp. 398–399.

    Google Scholar 

  • Ge, X.-J., Yu, Y., Zhao, N.-X., Chen, H.-Sh., and Qi, W.-Q. (2003). Genetics in the endangered Inner Mongolia endemic shrub Tetraena mongolica Maxim (Zygophyllaceae). Biol. Conserv. 111:427–434.

    Article  Google Scholar 

  • Haga, T., and Kurabayashi, M. (1954). Genome and polyploidy in the genus Trillium, 5: Chromosomal variation in natural populations of Trillium kamtschaticum Pall. Mem. Fac. Sci. Kyushu Univ. Ser. E. Biol. 1:159–185.

    Google Scholar 

  • Hamrick, J. L. (1983). The distribution of genetic variation within and among natural plant populations. In Schonewald-Cox, C. M., Chambers, S. M., McBryde, B., and Thomas, W. L. (eds.), Genetics and Conservation, Benjamin/Cummings, Menlo Park, California, pp. 335–348.

    Google Scholar 

  • Hamrick, J. L., and Godt, M. J. W. (1989). Allozyme diversity in plant species. In Brown, A. H. D., Clegg, M. T., Kahler, A. L., and Weir, B. S. (eds.), Plant Population Genetics: Breeding and Genetic Resources, Sinauer, Sunderland, Massachusetts, pp. 43–63.

    Google Scholar 

  • Han, T. H., de Jeu, M., van Eck, H., and Jacobsen, E. (2000). Genetic diversity of Chilean and Brazilian Alstroemeria species assessed by AFLP analysis. Heredity 84:564–569.

    Article  PubMed  Google Scholar 

  • Hara, H. (1969). New or noteworthy flowering plants from Eastern Himalaya. J. Jpn. Bot. 44:373–378.

    Google Scholar 

  • Hiroshi, T., and Masashi, O. (2003). Genetic diversity and local population structure of fragmented populations of Trillium camschatcense (Trilliaceae). Biol. Conserv. 109:249–258.

    Article  Google Scholar 

  • Hogbin, P. M., and Peakall, R. (1999). Evaluation of the conservation of genetic research to the management of endangered plant Zieria prostrata. Conserv. Biol. 13:514–522.

    Article  Google Scholar 

  • Hunter, M. L. (1996). Fundamentals of Conservation Biology, Blackwell Sciences, London.

    Google Scholar 

  • Jin, Y., Zhang, W.-J., Fu, D.-X., and Lu, B.-R. (2003). Sampling strategy within a wild soybean population based on its genetic variation detected by ISSR markers. Acta Bot. Sinica 45(8):995–1002.

    Google Scholar 

  • Kalisz, S. K., Hanzawa, F. M., Tonsor, S. J., Thiede, D. A., and Voigt, S. (1999). Ant-mediated seed dispersal alters pattern of relatedness in a population of Trillium grandiflorum. Ecology 80(8):2620–2634.

    Google Scholar 

  • Kalisz, S. K., Nason, J. D., and Hanzawa, F. M. (2001). Spatial population genetic structure in Trillium grandiflorum: The roles of dispersal, mating, history, and selection. Evolution 55(8):1560–1568.

    PubMed  Google Scholar 

  • Keiper, F. J., and McConchie, R. (2000). An analysis of genetic variation in natural populations of Sticherus flabellatus R. Br. (St. John) using amplified fragment length polymorphism (AFLP) markers. Mol. Ecol. 9:571–581.

    Article  PubMed  Google Scholar 

  • Lewontin, R. C. (1972). The apportionment of human diversity. Evol. Biol. 6:381–398.

    Google Scholar 

  • Loh, J. P., Kiew, R., Set, O., Gan, L. H., and Gan, Y. Y. (2000). Study of genetic variation and relationships within the bamboo subtribe Bambusinae using amplified fragment length polymorphism. Ann. Bot. 85:607–612.

    Article  Google Scholar 

  • Maki, M. (2003). Population genetics of threatened wild plants in Japan. J. Plant Res. 116:169–174.

    PubMed  Google Scholar 

  • Malone, C. L., Knapp, C. R., Taylor, J. F., andDavis, S. K. (2003). Genetic consequences of Pleistocene fragmentation: Isolation, drift, and loss of diversity in rock iguanas (Cyclura). Conserv. Gen. 4:1–15.

    Article  Google Scholar 

  • Miller, M. P. (1997). Tools for Population Genetic Analysis (TEPGA), Version 1.3. Department of Biological Sciences, Northern Arizona University, Arizona, USA.

  • Miller, M. P. (1998). AMOVA-PREP 1.01: A program for the preparation of AMOVA input files from dominant-markers raw data. Computer software distributed by author.

  • Nei, M. (1972). Genetic distance between populations. Am. Nat. 106:283–292.

    Article  Google Scholar 

  • Nohara, T., Kumamoto, F., Miyahara, K., and Kawasaki, T. (1975). Steroid saponins of aerial parts of Paris tetraphylla A. Gray and of underground parts of Trillium tschonoskii Maxim. Chem. Pharm. Bull. 23(5):1158–1160.

    Google Scholar 

  • Nybom, H., and Bartish, I. V. (2000). Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect. Plant Ecol. Evol. Syst. 3:93–114.

    Article  Google Scholar 

  • Qiu, Y.-X., Hong, D.-Y., Fu, C.-X., and Cameron, K. M. (2004). Genetic variation in the endangered and endemic species Changium smyrnioides (Apiaceae). Biochem. Syst. Ecol. 32(6):583–596.

    Article  Google Scholar 

  • Reed, D. H. (2003). Correlation between fitness and genetic diversity. Conserv. Biol. 17:230–237.

    Article  Google Scholar 

  • Rohlf, F. J. (1997). NTSYS-pc: Numerical taxonomy and multivariate analysis system, ver. 2.02. Exeter Ltd., Setauket, NY.

  • Samejima, K., and Samejima, J. (1962). Studies on the eastern Asiatic Trillium (Liliaceae). Act. Hort. Gotob. 25:157–257.

    Google Scholar 

  • Schaal, B. A., Leverich, W. J., and Rogstad, S. H. (1991). Comparison of methods for assessing genetic variation in plant conservation biology. In Falk, D. A., and Holsinger, K. E. (eds.), Genetics and Conservation of Rare Plants, Oxford University Press, New York, pp. 123–134.

    Google Scholar 

  • Slatkin, M. (1985). Gene flow in natural populations. Annu. Rev. Ecol. Syst. 16:393–430.

    Article  Google Scholar 

  • Uchino, A. (1985a). Chromosomal variation in the K2T genome complex of polyploidy trilliums. Jpn. J. Genet. 60:557–564.

    Google Scholar 

  • Uchino, A. (1985b). Structure and dynamics of natural populations of polyploid trilliums, 3: A tetraploid species Trillium tschonoskii Maximowicz. Jpn. J. Genet. 60:545–555.

    Google Scholar 

  • Uchino, A., Takekawa, S., Wang, L., and Takamiya, M. (1997). Cold-treated karyotypes of Trillium tschonoskii var. tschonoskii in a Chinese population. Chromosome Sci. 1:31–33.

    Google Scholar 

  • Lamote, V., Roldán-Ruiz, I., Coart, E., De Loose, M., Van Bockstaele, E. (2002). A study of genetic variation in Iris pseudacorus populations using amplified fragment length polymorphisms (AFLPs). Aquat. Bot. 73:19–31.

    Article  Google Scholar 

  • Lucchini, V. (2003). AFLP: A useful tool for biodiversity conservation and management. C. R. Biologies 326:S43–S48.

    Article  PubMed  Google Scholar 

  • Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., and Kuiper, M. (1995). AFLP: A new technique for DNA fingerprinting. Nucl. Acids Res. 23:4407–4414.

    PubMed  Google Scholar 

  • Watanabe, H., and Kayano, H. (1971). Karyotype analysis of natural populations of Trillium tschonoskii. Jpn. J. Genet. 46:231–234.

    Google Scholar 

  • Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., and Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res. 18:6531–6535.

    PubMed  Google Scholar 

  • Wu, C.-J., Chen, Z.-Q., Huang, X.-Q., Yin, S.-H., Cao, K.-M., and Sun, C.-R. (2004). Genetic diversity among and within populations of Oryza granulata fromYunnan of China revealed by RAPD and ISSR markers: Implications for conservation of the endangered species. Plant Sci. 1–8.

  • Yeh, F. C., Yang, R. C., Boyle, T., Ye, Z. H., and Mao, J. X. (1997). Popgene, the User Friendly Shareware for Population Genetic Analysis, Molecular Biology and Biotechnology Center, University of Alberta, Edmonton, Canada.

    Google Scholar 

  • Yoshitama, K., Oyamada, T., and Yahara, S. (1997). Flavonoids in the leaves of Trillium undulatum Willdenow. J. Plant Res. 110(1099):379–381.

    Google Scholar 

  • Zou, Y.-P., Ge, S., and Wang, X.-D. (2001). Molecular Markers Used in Systematics and Development Botany, Science Press, Beijing (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Xiao, M., Guo, L. et al. Genetic Diversity and Genetic Structure of an Endangered Species, Trillium tschonoskii. Biochem Genet 43, 445–458 (2005). https://doi.org/10.1007/s10528-005-6782-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-005-6782-2

Keywords

Navigation