Skip to main content
Log in

Magnetotactic bacteria for cancer therapy

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Cancer is characterized by anomalous cell growth. Conventional therapies face many challenges and hence alternative treatment methods are in great demand. In addition, nature offers the best inspiration and recently many therapies of natural origin have proved multi-targeted, multi-staged, and a multi-component mode of action against cancer. Magnetotactic bacteria and magnetosomes-based treatment methods are among them. Present paper reviews various routes by which magnetotactic bacteria and magnetosomes contribute to cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Afkhami F, Taherkhani S, Mohammadi M, Martel S (2011) Encapsulation of magnetotactic bacteria for targeted and controlled delivery of anticancer agents for tumor therapy. Conf Proc IEEE Eng Med Biol Soc 2011:6668–6671

    PubMed  Google Scholar 

  • Alphandery E (2014) Applications of magnetosomes synthesized by magnetotactic bacteria in medicine. Front Bioeng Biotechnol 2:5

    PubMed Central  PubMed  Google Scholar 

  • Alphandery E, Carvallo C, Menguy N, Chebbi I (2011a) Chains of cobalt doped magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. J Phy Chem C 115:11920–11924

    Article  CAS  Google Scholar 

  • Alphandery E, Faure S, Raison L, Duguet EM, Howse PA, Bazylinski DA (2011b) Heat production by bacterial magnetosomes exposed to an oscillating magnetic field. J Phys Chem C 115:18–22

    Article  CAS  Google Scholar 

  • Alphandery E, Faure S, Chebbi I (2011b) US Patent, WO 2011,061259 A1. Treatment of cancer or tumor induced by the release of heat generated by various chains of magnetosomes extracted from magnetotactic bacteria and submitted to an alternative magnetic field

  • Alphandery E, Faure S, Seksek O, Guyot F, Chebbi I (2011d) Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano 5:6279–6296

    Article  CAS  PubMed  Google Scholar 

  • Alphandery E, Guyot F, Chebbi I (2012) Preparation of chains of magnetosomes, isolated from Magnetospirillum magneticum strain AMB-1 magnetotactic bacteria, yielding efficient treatment of tumors using magnetic hyperthermia. Int J Pharm 434:444–452

    Article  CAS  PubMed  Google Scholar 

  • Alphandery E, Chebbi I, Guyot F, Dubief MD (2013) Use of bacterial magnetosomes in the magnetic hyperthermia treatment of tumours: a review. Int J Hyperthermia 29:801–809

    Article  PubMed  Google Scholar 

  • Arakaki A, Nakazawa H, Nemoto M, Mori T, Matsunaga T (2008) Formation of magnetite by bacteria and its application. J R Soc Interface 5:977–999

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bazylinski DA, Garratt-Reed A, Frankel RB (1994) Electron microscopic studies of magnetosomes in magnetotactic bacteria. Microsc Res Tech 27:389–401

    Article  CAS  PubMed  Google Scholar 

  • Benoit MR, Mayer D, Barak Y, Chen IY, Hu W, Cheng Z, Wang SX, Spielman DM, Gambhir SS, Matin A (2009) Visualizing implanted tumors in mice with magnetic resonance imaging using magnetotactic bacteria. Clin Cancer Res 15:5170–5177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Y, Kosmas P, Martel S (2013) Microwave breast tumor detection and size estimation using contrast-agent-loaded magnetotactic bacteria. Int Conf Proc Eng Med Biol Soc 5481–5484

  • Deng Q, Liu Y, Wang S, Xie M, Wu S, Chen A, Wu W (2013) Construction of a novel magnetic targeting anti-tumor drug delivery system: cytosine arabinoside-loaded bacterial magnetosome. Materials 6:3755–3763

    Article  CAS  Google Scholar 

  • Dutz S, Hergt R (2013) Magnetic nanoparticle heating and heat transfer on a microscale: basic principles, realities and physical limitations of hyperthermia for tumour therapy. Int J Hyperthermia 29:790–800

    Article  PubMed  Google Scholar 

  • Felfoul O, Mohammadi M, Martel S (2007) Magnetic resonance imaging of Fe3O4 nanoparticles embedded in living magnetotactic bacteria for potential use as carriers for in vivo applications. Conf Proc IEEE Eng Med Biol Soc 1463–1466

  • Felfoul O, Mokrani N, Mohammadi M, Martel S (2010) Effect of the chain of magnetosomes embedded in magnetotactic bacteria and their motility on magnetic resonance imaging. Conf Proc IEEE Eng Mol Biol Soc 4367–4370

  • Felfoul O, Mohammadi M, Gaboury L, Martel S (2011) Tumor targeting by computer controlled guidance of magnetotactic bacteria acting like autonomous microrobots. Conf Proc IEEE Intell Robot Syst 1304–1308

  • Gambhir SS, Benoit M, Matin AC, Barak Y, Keren S, Mayer D (2010). US Patent: US, 0135912 A1. Magnetotactic bacteria MRI positive contrast enhancement agent and methods of use

  • Goldhawk DE, Rohani R, Sengupta A, Gelman N, Prato FS (2012) Using the magnetosome to model effective gene-based contrast for magnetic resonance imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4:378–388

    Article  CAS  PubMed  Google Scholar 

  • Gorby YA, Beveridge TJ, Blakemore RP (1988) Characterization of the bacterial magnetosome membrane. J Bacteriol 170:834–841

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grunberg K, Muller EC, Otto A, Reszka R, Linder D, Kube M, Reinhardt R, Schuler D (2004) Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl Env Microbiol 70:1040–1050

    Article  Google Scholar 

  • Hafeli UO, Pauer GJ (1999) In vitro and in vivo toxicity of magnetic microspheres. J Magn Magn Mater 194:76–82

    Article  CAS  Google Scholar 

  • Herborn CU, Papanikolaou N, Reszka R, Grünberg K, Schüler D, Debatin JF (2003) Magnetosomes as biological model for iron binding: relaxivity determination with MRI. Rofo 175:830–834

    Article  CAS  PubMed  Google Scholar 

  • Hergt R, Dutz S, Müller R, Zeisberger M (2006) Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys 18:S2919–S2934

    CAS  Google Scholar 

  • Hoell A, Wiedenmann A, Heyen U, Schüler D (2004) Nanostructure and field-induced arrangement of magnetosomes studied by SANSPOL. Phys B 350:E309–E313

    Article  CAS  Google Scholar 

  • Hofer U (2013) A close-up of magnetotactic bacteria. Nat Rev Microbiol 11:360

    CAS  PubMed  Google Scholar 

  • Hopkin M (2004) Magnet-making bacteria could target tumours. Nature. doi:10.1038/news040906-11

    Google Scholar 

  • Jain RK (2001) New approaches for the treatment of cancer. Adv Drug Deliv Rev 46:149–168

    Article  CAS  PubMed  Google Scholar 

  • Jevprasesphant R, Penny J, Jalal R, Attwood D, McKeown NB, D’Emanuele A (2003) The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm 252:263–266

    Article  CAS  PubMed  Google Scholar 

  • Katritch V, Abagyan R (2011) GPCR against binding revealed by modelling and crystallography. Trends Pharmacol Sci 32:637–643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khalil ISM, Pichek MP, Zondervan L, Abelmann L, Misra S (2013a) Characterization and control of biological microrobots. In: Desai JP, Dudek G, Khatib O, Kumar V (eds) Experimental robotics. Springer tracts in advanced robotics, 88th edn. Springer, Zurich, pp 617–631

    Google Scholar 

  • Khalil ISM, Magdanz V, Sanchez S, Schmidt OG, Abelmann L, Misra S (2013b) Magnetic control of potential microrobotic drug delivery systems: nanoparticles, magnetotactic bacteria and self-propelled microjets. Conf Proc IEEE Ann Int Conf EMBS 2013:5299–5302

    Google Scholar 

  • Kingsley JD, Dou H, Morehead J, Rabinow B, Gendelman HE, Destache CJ (2006) Nanotechnology: a focus on nanoparticles as a drug delivery system. J Neuroimmune Pharmacol 1:340–350

    Article  PubMed  Google Scholar 

  • Kumar AVS, Kumar PG, Shankar S (2009) Role of nuclear medicine in evaluation and management of joint diseases. Ind J Rheumatol 4:61–68

    Article  Google Scholar 

  • Lisy MR, Hartung A, Lang C, Schüler D, Richter W, Reichenbach JR, Kaiser WA, Hilger I (2007) Fluorescent bacterial magnetic nanoparticles as bimodal contrast agents. Invest Radiol 42:235–241

    Article  CAS  PubMed  Google Scholar 

  • Liu RT, Liu J, Tong JQ, Tang T, Kong WC, Wang XW, Li Y, Tan JT (2012) Heating effect and biocompatibility of bacterial magnetosomes as potential materials used in magnetic fluid hyperthermia. Prog Nat Sci Mater Int 22:31–39

    Article  CAS  Google Scholar 

  • Liu Y, Xie M, Wang S, Zheng Q, Chen A, Deng Q (2013) Facile fabrication of high performances MTX nanocomposites with natural biomembrane bacterial nanoparticles using GP. Mater Lett 100:248–251

    Article  CAS  Google Scholar 

  • Lu Z, Martel S (2006) Preliminary investigation of bio-carriers using magnetotactic bacteria. Conf Proc IEEE Eng Med Biol Soc 1:3415–3418

    Article  PubMed  Google Scholar 

  • Luk KH, Drennan T, Anderson K (1986) Potential role of physical therapists in hyperthermia in cancer therapy: the need for further training. Phys Ther 66:340–343

    CAS  PubMed  Google Scholar 

  • Malloy TF (2011) Nanotechnology regulation: a study in claims making. ACS Nano 5:5–12

    Article  CAS  PubMed  Google Scholar 

  • Martel S (2006) Towards MRI-controlled ferromagnetic and MC-1 magnetotactic bacterial carriers for targeted therapies in arteriolocapillar networks stimulated by tumoral angiogenesis. Conf Proc IEEE Eng Med Biol Soc 1:3399–3402

    Article  PubMed  Google Scholar 

  • Martel S (2010) Microrobotic navigable entities for magnetic resonance targeting. Conf Proc IEEE Eng Med Biol Soc 5:1942–1945

    Google Scholar 

  • Martel S (2012) Magnetotactic bacteria for microrobotics. In: Kim M, Steager E, Agung J (eds) Microbiorobotics: biologically inspired microscale robotic systems. Elsevier, Oxford, pp 201–210

    Chapter  Google Scholar 

  • Martel S (2014) Towards fully autonomous bacterial microrobots. Experimental robotics. Springer tracts in advanced robotics, vol 79. Springer, New York, pp 775–784

  • Martel S, Felfoul O, Mathieu JB, Chanu A, Tamaz S, Mohammadi M, Mankiewicz M, Tabatabaei N (2009) MRI-based medical nanorobotic platform for the control of magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries. Int J Rob Res 28:1169–1182

    Article  PubMed Central  PubMed  Google Scholar 

  • Maruyama K (2007) Detection of epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC) using a fully automated system with a nano-scale engineered biomagnetite. Biosens Bioelectron 22:2282–2288

    Article  CAS  PubMed  Google Scholar 

  • Maruyama K, Takeyama H, Nemoto E, Tanaka T, Yoda K, Matsunaga T (2004) Single nucleotide polymorphism detection in aldehyde dehydrogenase 2 (ALDH2) gene using bacterial magnetic particles based on dissociation curve analysis. Biotechnol Bioeng 87:687–694

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga T, Higashi Y, Tsujimura N (1997) Drug delivery by magnetoliposomes containing bacterial magnetic particles. Cell Eng 2:7–11

    CAS  Google Scholar 

  • Matsunaga T, Takeyama H, Tanaka T, Yoshino T (2004) Japanese Patent: JP 2004290039A. Jpn Kokai Tokkyo Koho. Manufacture of G protein-coupled receptor (GPCR) with magnetic bacteria

  • Matsunaga T, Maruyama K, Takeyama H, Katoh T (2007) High-throughput SNP detection using nano-scale engineered biomagnetite. Biosens Bioelectron 22:2315–2321

    Article  CAS  PubMed  Google Scholar 

  • Mokrani N, Felfoul O, Afkhami ZF, Mohammadi M, Aloyz R, Batist G, Martel S (2010) Magnetotactic bacteria penetration into multicellular tumor spheroids for targeted therapy. Conf Proc. IEEE Eng Med Biol Soc 2010:4371–4374

    PubMed  Google Scholar 

  • Munoz-Jimenez A, Clares B, Ruiz MA, Arias JL (2010) Cancer therapy and diagnosis by magnetosomes. Ars Pharm 51:203–207

    Google Scholar 

  • Nakamura N, Hashimoto K, Matsunaga T (1991) Immunoassay method for the determination of immunoglobulin G using bacterial magnetic particles. Anal Chem 63:268–272

    Article  CAS  PubMed  Google Scholar 

  • Ota H, Takeyama H, Nakayama H, Katoh T, Matsunaga T (2003) SNP detection in transforming growth factor-β1 gene using bacterial magnetic particles. Biosens Bioelectron 18:683–687

    Article  CAS  PubMed  Google Scholar 

  • Patyar S, Joshi R, Byrav DSB, Prakash A, Medhi B, Das BK (2010) Bacteria in cancer therapy: a novel experimental strategy. J Biomed Sci 17:21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sahoo SK, Labhasetwar V (2003) Nanotech approaches to drug delivery and imaging. Drug Discov Today 8:1112–1120

    Article  CAS  PubMed  Google Scholar 

  • Schüler D, Frankel RB (1999) Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications. Appl Env Microbiol 52:464–473

    Google Scholar 

  • Schwarz S, Fernandes F, Sanroman L, Hodenius M, Lang C, Himmelreich U, Schmitz-Rode T, Schuler D, Hoehn M, Zenke M, Hieronymus T (2009) Synthetic and biogenic magnetite nanoparticles for tracking of stem cells and dendritic cells. J Magn Magn Mater 321:1533–1538

    Article  CAS  Google Scholar 

  • Sinha R, Kim GJ, Niel S, Shin DM (2006) Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 5:1909–1917

    Article  CAS  PubMed  Google Scholar 

  • Sun JB (2007) In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: the magnetic bio-nanoparticles as drug carriers. Cancer Lett 258:109–117

    Article  CAS  PubMed  Google Scholar 

  • Sun JB (2009) Targeted distribution of bacterial magnetosomes isolated from Magnetospirillum gryphiswaldense MSR-1 in healthy Sprague-Dawley rats. J Nanosci Nanotechnol 9:1881–1885

    Article  CAS  PubMed  Google Scholar 

  • Sun JB, Duan JH, Dai SL, Ren J, Guo L, Jiang W, Li Y (2008) Preparation and anti-tumor efficiency evaluation of doxorubicin-loaded bacterial magnetosomes: magnetic nanoparticles as drug carriers isolated from Magnetospirillum gryphiswaldense. Biotechnol Bioeng 101:1313–1320

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Tang T, Duan J, Xu PX, Wang Z, Zhang Y, Wu L, Li Y (2010) Biocompatibility of bacterial magnetosomes: acute toxicity, immunotoxicity and cytotoxicity. Nanotoxicol 4:271–283

    Article  CAS  Google Scholar 

  • Sun J, Li Y, Liang XJ, Wang CW (2011) Bacterial magnetosome: a novel biogenetic magnetic targeted drug carrier with potential multi functions. J Nanomater 469031–469043

  • Suri SS, Fenniri H, Singh B (2007) Nanotechnology-based drug delivery systems. J Occup Med Toxicol 2:16

    Article  PubMed Central  PubMed  Google Scholar 

  • Taherkhani S, Mohammadi M, Daoud J, Martel S, Tabrizian M (2014) Covalent binding of nanoliposomes to the surface of magnetotactic bacteria for the synthesis of self-propelled therapeutic agents. ACS Nano 8:5049–5060

    Article  CAS  PubMed  Google Scholar 

  • Tang YS (2012) Bacterial magnetic particles as a novel and efficient gene vaccine delivery system. Gene Ther 19:1187–1195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tomita-Mitchell A, Muniappan BP, Herrero-Jimenez P, Zarbl H, Thilly WG (1998) Single nucleotide polymorphism spectra in newborns and centenarians: identification of genes coding for rise of mortal disease. Gene 223:381–391

    Article  CAS  PubMed  Google Scholar 

  • Vereda F, Vicente DJ, Hidalgo-Álvarez R (2009) Physical properties of elongated magnetic particles: magnetization and friction coefficient anisotropies. Chem Phys Chem 10:1165–1179

    CAS  PubMed  Google Scholar 

  • Wagner V, Dullaart A, Bock AK, Zweck A (2006) The emerging nanomedicine landscape. Nat Biotechnol 24:1211–1217

    Article  CAS  PubMed  Google Scholar 

  • Xiang L, Wei J, Jianbo S, Guili W, Feng G, Ying L (2007) Purified and sterilized magnetosomes from Magnetospirillum gryphiswaldense MSR-1 were not toxic to mouse fibroblasts in vitro. Lett Appl Microbiol 45:75–81

    Article  CAS  PubMed  Google Scholar 

  • Yan L (2012) Biocompatibility evaluation of magnetosomes formed by Acidithiobacillus ferrooxidans. Mater Sci Eng, C 32:1802–1807

    Article  CAS  Google Scholar 

  • Yoshino T, Haruko T, Matsunaga T (2002) Bacterial magnetic particle surface display of G protein-coupled receptors. Nippon Kagakkai Baiotekunoroji Bukai Shinpojiumu Koen Yoshishu 6:40 (in Japanese)

  • Yoshino T, Takahashi M, Takeyama H, Okamura Y, Kato F, Matsunaga T (2004) Assembly of G protein-coupled receptors onto nanosized bacterial magnetic particles using Mms16 as an anchor molecule. Appl Environ Microbiol 70:2880–2885

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshino T, Maeda Y, Matsunaga T (2010) Bioengineering of bacterial magnetic particles and their applications in biotechnology. Recent Pat Biotechnol 4:214–225

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Author acknowledges Mr. Anshul Kumar for editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhilasha S. Mathuriya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathuriya, A.S. Magnetotactic bacteria for cancer therapy. Biotechnol Lett 37, 491–498 (2015). https://doi.org/10.1007/s10529-014-1728-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1728-6

Keywords

Navigation