Skip to main content
Log in

Identification of strong promoters based on the transcriptome of Bacillus licheniformis

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

To expand the repertoire of strong promoters for high level expression of proteins based on the transcriptome of Bacillus licheniformis.

Results

The transcriptome of B. licheniformis ATCC14580 grown to the early stationary phase was analyzed and the top 10 highly expressed genes/operons out of the 3959 genes and 1249 operons identified were chosen for study promoter activity. Using beta-galactosidase gene as a reporter, the candidate promoter pBL9 exhibited the strongest activity which was comparable to that of the widely used strong promoter p43. Furthermore, the pro-transglutaminase from Streptomyces mobaraensis (pro-MTG) was expressed under the control of promoter pBL9 and the activity of pro-MTG reached 82 U/ml after 36 h, which is 23% higher than that of promoter p43 (66.8 U/ml).

Conclusion

In our analyses of the transcriptome of B. licheniformis, we have identified a strong promoter pBL9, which could be adapted for high level expression of proteins in the host Bacillus subtilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Boylan SA, Redfield AR, Price CW (1993) Transcription factor sigma B of Bacillus subtilis controls a large stationary phase regulon. J Bacteriol 175:3957–3963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folk JE, Cole PW (1966) Identification of a functional cysteine essential for the activity of guinea pig liver transglutaminase. J Biol Chem 241:3238–3240

    CAS  PubMed  Google Scholar 

  • Georg J, Hess WR (2011) cis-antisense RNA, another level of gene regulation inbacteria. Microbiol Mol Biol Rev 75:286–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haldenwang WG (1995) The sigma factors of Bacillus subtilis. Microbiol Rev 59:1–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herman A, Halvorson H (1963) Identification of the structural gene forβ-glucosidase in Saccharomyces lactis. J Bacteriol 85:895–900

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirata H, Negoro S, Okada H (1985) High production of thermostable β-galactosidase of Bacillus stearothermophilus in Bacillus subtilis. Appl Environ Microbiol 49:1547–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs M, Eliasson M, Uhlen M, Flock J (1985) Cloning, sequencing and expression of subtilisin Carlsberg from Bacillus licheniformis. Nucl Acids Res 13:8913–8926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao Y, Huang L, Wang B, Zhou F, Pan L (2015) The global transcriptional landscape of Bacillus amyloliquefaciens XH7 and high-throughput screening of strong promoters based on RNA-seq data. Gene 571:252–262

    Article  CAS  PubMed  Google Scholar 

  • Martin J, Zhu W, Passalacqua KD, Bergman N, Borodovsky M (2010) Bacillus anthracis genome organization in light of whole transcriptome sequencing. BMC Bioinform 11:S10

    Article  Google Scholar 

  • Moreno-Campuzano S, Janga SC, Pérez-Rueda E (2006) Identification and analysis of DNA-binding transcription factors in Bacillus subtilis and other Firmicutes-agenomic approach. BMC Genom 7:147

    Article  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Nithya V, Murthy PSK, Halami PM (2013) Development and application of activefilms for food packaging using antibacterial peptide of Bacillus licheniformis Me1. J Appl Microbiol 115:475–483

    Article  CAS  PubMed  Google Scholar 

  • Niu DD, Wang ZX (2007) Development of a pair of bifunctional expression vectors for Escherichia coli and Bacillus licheniformis. J Ind Microbiol Biotechnol 34:357–362

    Article  CAS  PubMed  Google Scholar 

  • Pötter M, Oppermann-Sanio FB, Steinbüchel A (2001) Cultivation of bacteria producing polyamino acids with liquid manure as carbon and nitrogen source. Appl Environ Microbiol 67:617–622

    Article  PubMed  PubMed Central  Google Scholar 

  • Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rey MW, Ramaiya P, Nelson BA, Brody-Karpin SD, Zaretsky EJ, Tang M, de Leon AL, Xiang H, Gusti V, Clausen IG, Olsen PB, Rasmussen MD, Andersen JT, Jørgensen PL, Larsen TS, Sorokin A, Bolotin A, Lapidus A, Galleron N, Ehrlich SD, Berka RM (2004) Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol 5:R77

    Article  PubMed  PubMed Central  Google Scholar 

  • Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50:1–17

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Nikoloff JM, Fu G, Chen J, Li Q, Xie N, Zheng P, Sun J, Zhang D (2016) Promoter screening from Bacillus subtilis in various conditions hunting for synthetic biology and industrial applications. PLoS ONE 11:e0158447

    Article  PubMed  PubMed Central  Google Scholar 

  • Sorek R, Cossart P (2010) Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Genet 11:9–16

    Article  CAS  PubMed  Google Scholar 

  • Veith B, Herzberg C, Steckel S, Feesche J, Maurer KH, Ehrenreich P, Bäumer S, Henne A, Liesegang H, Merkl R, Ehrenreich A, Gottschalk G (2004) The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. J Mol Microbiol Biotechnol 7:204–211

    Article  CAS  PubMed  Google Scholar 

  • Vijayan V, Jain IH, O’Shea EK (2011) A high resolution map of a cyanobacterial transcriptome. Genome Biol 12:R47

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Ai X, Mei H, Fu Y, Chen B, Yu Z, He J (2013) High-throughput identification of promoters and screening of highly active promoter-59-UTR DNA region with different characteristics from Bacillus thuringiensis. PLoS ONE 8:e62960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiegand S, Dietrich S, Hertel R, Bongaerts J, Evers S, Volland S, Daniel R, Liesegang H (2013) RNA-Seq of Bacillus licheniformis: active regulatory RNA features expressed within a productive fermentation. BMC Genom 14:667

    Article  CAS  Google Scholar 

  • Zakataeva NP, Nikitina OV, Gronskiy SV, Romanenkov DV, Livshits VA (2010) A simple method to introduce marker-free genetic modifications into the chromosome of naturally nontransformable Bacillus amyloliquefaciens strains. Appl Microbiol Biotechnol 85:1201–1209

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the financial support by the Science and Technology Planning Project of Guangdong Province (Grant No. 2013B010404007), the State 863 Project (Grant No. 2014AA021304).

Supporting information

Supplementary Figure 1—Construction flowchart of pBE-pBL1-bgaB. All the 11 expression plasmids were constructed as follows.

Supplementary Figure 2—The homogeniety of β-Gal expression A qualitative plate assay was developed for measuring the enzyme level in isolated colonies. All materials and concentrations were the same for two plates, except for the portion of the plate that was overlaid with 3 ml of 0.067 M potassium phosphate buffer (pH 6.8) containing 3 mg of o-nitrophenyl-β-D-galactoside (ONPGal).

Supplementary Figure 3—β-Gal activities of all the promoters acting throughout the life cycle (72 h).

Supplementary Figure 4—Construction flowchart of pBE-pBL9-proMTG.

Supplementary Table 1—Bacterial strains and plasmids.

Supplementary Table 2—Primers used.

Supplementary Table 3—Genome-wide pathway analysis and GO analysis.

Supplementary Table 4—Identified operons.

Supplementary Table 5—Candidates were selected. Promoter sequence: The sequences of two operon structural genes were screened. When the sequence length was more than 300 bp, the start codon leader sequence (300 bp) was obtained. Predicted σ-factor and Transcriptional factor were obtained from: http://dbtbs.hgc.jp/.

Supplementary Table 6—Identification TF families and functional description of ten Candidates. Predicted TF families and functional description were obtained from: http://dbtbs.hgc.jp/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Pan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

(TIFF 1495 kb)

Supplementary Figure 2

(TIFF 41,223 kb)

Supplementary Figure 3

(TIFF 1558 kb)

Supplementary Figure 4

(TIFF 1322 kb)

Supplementary Table 1

(DOCX 19 kb)

Supplementary Table 2

(DOCX 20 kb)

Supplementary Tables 3, 4, 5, 6

(XLS 1282 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yang, H., zheng, J. et al. Identification of strong promoters based on the transcriptome of Bacillus licheniformis . Biotechnol Lett 39, 873–881 (2017). https://doi.org/10.1007/s10529-017-2304-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-017-2304-7

Keywords

Navigation