Skip to main content
Log in

Proteomic approach to address low seed germination in Cyclobalnopsis gilva

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Seeds play essential roles in plant life cycle and germination is a complex process which is associated with different phases of water imbibition. Upon imbibition, seeds begin utilization of storage substances coupled with metabolic activity and biosynthesis of new proteins. Regeneration of organelles and emergence of radicals lead to the establishment of seedlings. All these activities are regulated in coordinated manners. Translation is the requirement of germination of seeds via involvements of several proteins like beta-amylase, starch phosphorylase. Some important proteins involved in seed germination are discussed in this review. In the past decade, several proteomic studies regarding seed germination of various species such as rice, Arabidopsis have been conducted. We face A paucity of proteomic data with respect to woody plants e.g. Fagus, Pheonix etc. With particular reference to Cyclobalnopsis gilva, a woody plant having low seed germination rate, no proteomic studies have been conducted. The review aims to reveal the complex seed germination mechanisms from woody and herbaceous plants that will help in understanding different seed germination phases and the involved proteins in C. gilva.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ali Q, Haider MZ, Iftikhar W, Jamil S, Javed MT, Noman A, Iqbal M, Perveen R (2016) Drought tolerance potential of Vigna mungo L. lines as deciphered by modulated growth, antioxidant defense, and nutrient acquisition patterns. Braz J Bot 39:801–812

    Article  Google Scholar 

  • Ali Q, Javed MT, Noman A, Haider MZ, Waseem M, Iqbal N, Waseem M, Shah MS, Shahzad F, Perveen R (2017) Assessment of drought tolerance in mung bean cultivars/lines as depicted by the activities of germination enzymes, seedling’s antioxidative potential and nutrient acquisition. Arch Agron Soil Sci 63:1–19

    Article  Google Scholar 

  • Angelovici R, Fait A, Fernie AR, Galili G (2011) A seed high-lysine trait is negatively associated with the TCA cycle and slows down Arabidopsis seed germination. New Phytol 189:148–159

    Article  CAS  PubMed  Google Scholar 

  • Barrero JM, Talbot MJ, White RG, Jacobsen JV, Gubler F (2009) Anatomical and transcriptomic studies of the coleorhiza reveal the importance of this tissue in regulating dormancy in barley. Plant Physiol 150:1006–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bethke PC, Libourel IG, Aoyama N, Chung YY, Still DW, Jones RL (2007) The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiol 143:1173–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bewley JD, Black M (1994) Seeds. Springer, New York, pp 1–33

    Book  Google Scholar 

  • Bewley JD, Marcus A (1990) Gene expression in seed development and germination. Prog Nucleic Acid Res Mol Biol 38:165–193

    Article  CAS  PubMed  Google Scholar 

  • Bhatt A, Santo A, Gallacher D (2016) Seed mucilage effect on water uptake and germination in five species from the hyper-arid Arabian desert. J Arid Environ 128:73–79

    Article  Google Scholar 

  • Bradford KJ (1990) A water relations analysis of seed germination rates. Plant Physiol 94:840–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford K, Chen F, Cooley M, Dahal P, Downie B, Fukunaga K, Gee O, Gurusinghe S, Mella R, Nonogaki H (2000) Gene expression prior to radical emergence in imbibed tomato seeds. Seed biology: advances and applications. CAB International, Wallingford, pp 231–251

    Google Scholar 

  • Cao J, Li X (2015) Identification and phylogenetic analysis of late embryogenesis abundant proteins family in tomato (Solanum lycopersicum). Planta 241:757–772

    Article  CAS  PubMed  Google Scholar 

  • Carbonell M, Martinez E, Diaz J, Amaya J, Florez M (2004) Influence of magnetically treated water on germination of signal grass seeds. Seed Sci Technol 32:617–619

    Article  Google Scholar 

  • Castleden K, Naohiro A, Vanessa J, Elspeth A, Mac R, Paul Q, Peter B, Christine H, Foyer RF, John EL (2004) Evolution and function of the sucrose-phosphate synthase gene families in wheat and other grasses. Plant Physiol 3:1753–1764

    Article  Google Scholar 

  • Chen F, Dahal P, Bradford KJ (2001) Two tomato expansin genes show divergent expression and localization in embryos during seed development and germination. Plant Physiol 127:928–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Liu H, Chen W, Xie D, Zheng S (2009) Proteomic analysis of differentially expressed proteins in longan flowering reversion buds. Sci Hortic 122:275–280

    Article  CAS  Google Scholar 

  • Chen YS, Lo SF, Sun PK, Lu CA, Ho Thd YuSM (2015) A late embryogenesis abundant protein HVA1 regulated by an inducible promoter enhances root growth and abiotic stress tolerance in rice without yield penalty. Plant Biotechnol J 13:105–116

    Article  CAS  PubMed  Google Scholar 

  • Ding ZJ, Yan JY, Li GX, Wu ZC, Zhang SQ, Zheng SJ (2014) WRKY41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA. Plant J 79:810–823

    Article  CAS  PubMed  Google Scholar 

  • Dong K, Ge P, Ma C, Wang K, Yan X, Gao L, Li X, Liu J, Ma W, Yan Y (2012) Albumin and globulin dynamics during grain development of elite Chinese wheat cultivar Xiaoyan 6. J Cereal Sci 56:615–622

    Article  CAS  Google Scholar 

  • Dong K, Zhen S, Cheng Z, Cao H, Ge P, Yan Y (2015) Proteomic analysis reveals key proteins and phosphoproteins upon seed germination of wheat (Triticum aestivum L.). Front Plant Sci 6:1017–1025

    PubMed  PubMed Central  Google Scholar 

  • Ducos E, Touzet P, Boutry M (2001) The male sterile G cytoplasm of wild beet displays modified mitochondrial respiratory complexes. Plant J 26:171–180

    Article  CAS  PubMed  Google Scholar 

  • Edner C, Li J, Albrecht T, Mahlow S, Hejazi M, Hussain H (2007) Glucan, water dikinase activity stimulates breakdown of starch granules by plastidial β-amylases. Plant Physiol 145:17–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrenshaft M, Brambl R (1990) Respiration and mitochondrial biogenesis in germinating embryos of maize. Plant Physiol 93:295–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:15–45

    Google Scholar 

  • Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415

    Article  CAS  PubMed  Google Scholar 

  • Florez M, Carbonell MV, Martinez E (2007) Exposure of maize seeds to stationary magnetic fields: effects on germination and early growth. Environ Exp Bot 59:68–75

    Article  Google Scholar 

  • Fujino K, Sekiguchi H, Matsuda Y, Sugimoto K, Ono K, Yano M (2008) Molecular identification of a major quantitative trait locus, qLTG3–1, controlling low-temperature germinability in rice. Proc Natl Acad Sci USA 105:12623–12628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallardo K, Job C, Groot SP, Puype M, Demol H, Vandekerckhove J, Job D (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol 126:835–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallardo K, Job C, Groot SP, Puype M, Demol H, Vandekerckhove J, Job D (2002a) Importance of methionine biosynthesis for Arabidopsis seed germination and seedling growth. Plant Physiol 116:238–247

    Article  CAS  Google Scholar 

  • Gallardo K, Job C, Groot SP, Puype M, Demol H, Vandekerckhove J, Job D (2002b) Proteomics of Arabidopsis seed germination. A comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol 129:823–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong X, Bassel GW, Wang A, Greenwood JS, Bewley JD (2005) The emergence of embryos from hard seeds is related to the structure of the cell walls of the micropylar endosperm, and not to endo-β-mannanase activity. Ann Bot 96:1165–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grelet J, Benamar A, Teyssier E, Avelange-Macherel MH, Grunwald D, Macherel D (2005) Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying. Plant Physiol 137:157–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groot S, Karssen C (1987) Gibberellins regulate seed germination in tomato by endosperm weakening: a study with gibberellin-deficient mutants. Planta 171:525–531

    Article  CAS  PubMed  Google Scholar 

  • Han C, He D, Li M, Yang P (2014) In-depth proteomic analysis of rice embryo reveals its important roles in seed germination. Plant Cell Physiol 55:1826–1847

    Article  CAS  PubMed  Google Scholar 

  • Haq Z, Iqbal M, Jamil Y, Anwar H, Younis A, Arif M, Fareed MZ, Hussain F (2016) Magnetically treated water irrigation effect on turnip seed germination, seedling growth and enzymatic activities. Inf Proc Agric 3:99–106

    Google Scholar 

  • He D, Yang P (2013) Proteomics of rice seed germination. Front Plant Sci 4:1–9

    Google Scholar 

  • He D, Han C, Yang P (2011a) Gene expression profile changes in germinating rice. J Integr Plant Biol 53:835–844

    Article  CAS  PubMed  Google Scholar 

  • He D, Han C, Yao J, Shen S, Yang P (2011b) Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach. Proteomics 11:2693–2713

    Article  CAS  PubMed  Google Scholar 

  • He M, Chong Z, Kun D, Ting Z, Zhiwei C, Jiarui L, Yueming Y (2015) Comparative proteome analysis of embryo and endosperm reveals central differential expression proteins involved in wheat seed germination. BMC Plant Biol 15:97–104

    Article  PubMed  PubMed Central  Google Scholar 

  • Holdsworth MJ, Bentsink L, Soppe WJ (2008a) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179:33–54

    Article  CAS  PubMed  Google Scholar 

  • Holdsworth MJ, Finch-Savage WE, Grappin P, Job D (2008b) Post-genomics dissection of seed dormancy and germination. Trend Plant Sci 13:7–13

    Article  CAS  Google Scholar 

  • Hundertmark M, Buitink J, Leprince O, Hincha DK (2011) The reduction of seed-specific dehydrins reduces seed longevity in Arabidopsis thaliana. Seed Sci Res 21:165–173

    Article  CAS  Google Scholar 

  • Huppe HC, Turpin DH (1994) Integration of carbon and nitrogen metabolism in plant and algal cells. Annu Rev Plant Physiol Plant Mol Biol 45:577–607

    Article  CAS  Google Scholar 

  • Jacobsen JV, Gubler F, Chandler PM (1995) Gibberellin action in germinated cereal grains. Springer, New York, pp 246–271

    Google Scholar 

  • Jacobsen JV, Barrero JM, Hughes T, Julkowska M, Taylor JM, Xu Q, Gubler F (2013) Roles for blue light, jasmonate and nitric oxide in the regulation of dormancy and germination in wheat grain (Triticum aestivum L.). Planta 238:121–138

    Article  CAS  PubMed  Google Scholar 

  • Juszczak I, Bartels D (2017) LEA gene expression, RNA stability and pigment accumulation in three closely related linderniaceae species differing in desiccation tolerance. Plant Sci 255:59–71

    Article  CAS  PubMed  Google Scholar 

  • Kim ST, Wang Y, Kang SY, Kim SG, Rakwal R, Kim YC, Kang KY (2009) Developing rice embryo proteomics reveals essential role for embryonic proteins in regulation of seed germination. J Proteom Res 8:3598–3605

    Article  CAS  Google Scholar 

  • King R (1976) Abscisic acid in developing wheat grains and its relationship to grain growth and maturation. Planta 132:43–51

    Article  CAS  PubMed  Google Scholar 

  • Law SR, Narsai R, Whelan J (2014) Mitochondrial biogenesis in plants during seed germination. Mitochondrion 19:214–221

    Article  CAS  PubMed  Google Scholar 

  • Lee CT, Chien CH, Lin YY, Chiu Y, Yang S (2006) Protein changes between dormant and dormancy-broken seeds of Prunus campanulata Maxim. Proteomics 6:4147–4154

    Article  CAS  PubMed  Google Scholar 

  • Leubner-Metzger G, Frundt C, Vogeli-Lange R, Meins JF (1995) Class I [beta]-1,3-glucanases in the endosperm of tobacco during germination. Plant Physiol 109:751–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Pan Y, Chang B, Wang Y, Tang Z (2016) NO promotes seed germination and seedling growth under high salt may depend on EIN3 protein in Arabidopsis. Front Plant Sci 6:1203

    PubMed  PubMed Central  Google Scholar 

  • Li S, Wei X, Ren Y, Qiu J, Jiao G, Guo X, Tang S, Wan J, Hu P (2017) OsBT1 encodes an ADP-glucose transporter involved in starch synthesis and compound granule formation in rice endosperm. Sci Rep 7:40124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu XJ, Zhang XI, Mei M, Liu GI, Ma B (2016) Proteomic analysis of Magnolia sieboldii K. Koch seed germination. J Proteom 133:76–85

    Article  CAS  Google Scholar 

  • Ma Z, Marsolais F, Bykova NV, Igamberdiev AU (2016) Nitric oxide and reactive oxygen species mediate metabolic changes in barley seed embryo during germination. Front Plant Sci 7:138

    PubMed  PubMed Central  Google Scholar 

  • Makino A, Mae T, Ohira K (1988) Differences between wheat and rice in the enzymic properties of ribulose-1, 5-bisphosphate carboxylase/oxygenase and the relationship to photosynthetic gas exchange. Planta 174:30–38

    Article  CAS  PubMed  Google Scholar 

  • Manz B, Muller K, Kucera B, Volke F, Leubner-Metzger G (2005) Water uptake and distribution in germinating tobacco seeds investigated in vivo by nuclear magnetic resonance imaging. Plant Physiol 138:1538–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsukura C, Saitoh T, Hirose T, Ohsugi R, Perata P, Yamaguchi J (2000) Sugar uptake and transport in rice embryo. Expression of companion cell-specific sucrose transporter (OsSUT1) induced by sugar and light. Plant Physiol 124:85–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meiqing J, Zhihui L, Mohua Y, Lijun W, Qian S (2012) The study on seed quality and germination characteristics of cyclobalanopsis gilva (Bl.) Oerst. Chin Agric Sci Bull 34:008–009

    Google Scholar 

  • Morejon L, Castro Palacio J, Velazquez Abad L, Govea A (2007) Stimulation of Pinus tropicalis M. seeds by magnetically treated water. Int Agrophys 21:173–177

    Google Scholar 

  • Noman A, Ali Q, Naheed F, Rizwan M, Ali S, Irshad K (2015) Foliar application of ascorbate enhances the physiological and biochemical attributes of maize (Zea mays L.) cultivars under drought stress. Arch Agron Soil Sci 61(12):1659–1672

    Article  CAS  Google Scholar 

  • Noman A, Fahad S, Aqeel M, Ali U, Ullah A, Anwer S, Khan S, Zainab M (2017) miRNAs: major modulators for crop growth and development under abiotic stresses. Biotechnol Lett 9:685–700

    Article  Google Scholar 

  • Nonogaki H, Nomaguchi M, Okumoto N, Kaneko Y, Matsushima H, Morohashi Y (1998) Temporal and spatial pattern of the biochemical activation of the endosperm during and following imbibition of tomato seeds. Physiol Plant 102:236–242

    Article  CAS  Google Scholar 

  • Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant cell 15:1591–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohyanagi H, Sakata K, Komatsu S (2012) Soybean Proteome Database 2012: update on the comprehensive data repository for soybean proteomics. Front Plant Sci 3:110–116

    Article  PubMed  PubMed Central  Google Scholar 

  • Okamoto MKA, Seo M, Kushiro T, Asami T, Hirai N, Kamiya Y, Koshiba T, Nambara E (2006) CYP707A1 and CYP707A2, which encode ABA-hydroxylases, are indispensable for a proper control of seed dormancy and germination in Arabidopsis. Plant Physiol 141:97–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onomo PE, Niemenak N, Ndoumou DO, Lieberei R (2010) Change in amino acids content during germination and seedling growth of Cola sp. Afr J Biotechnol 9:114–119

    Google Scholar 

  • Pedrosa AM, Martins CDPS, Gonçalves LP, Costa MGC (2015) Late embryogenesis abundant (LEA) constitutes a large and diverse family of proteins involved in development and abiotic stress responses in sweet orange (Citrus sinensis L. Osb.). PLoS ONE 10:785–790

    Article  Google Scholar 

  • Rajjou L, Belghazi M, Huguet R, Robin C, Moreau A, Job C, Job D (2006) Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol 141:910–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranjan R, Lewak S (1992) Jasmonic acid promotes germination and lipase activity in non-stratified apple embryos. Physiol Plant 86:335–339

    Article  CAS  Google Scholar 

  • Sghaier-Hammami B, Drira N, Jorrin-Novo J (2009a) Comparative 2-DE proteomic analysis of date palm (Phoenix dactylifera L.) somatic and zygotic embryos. J Proteomics 1:161–177

    Article  Google Scholar 

  • Sghaier-Hammami B, Valledor L, Drira N, Jorrin-Novo J (2009b) Proteomics analysis of the development and germination of date palm (Phoenix dactylifera L.) zygotic embryos. Proteomics 9:2543–2554

    Article  CAS  PubMed  Google Scholar 

  • Sheoran IS, Olson DJ, Ross AR, Sawhney VK (2005) Proteome analysis of embryo and endosperm from germinating tomato seeds. Proteom 5:3752–3764

    Article  CAS  Google Scholar 

  • Shin J, Sung-R K, Gynheung A (2009) Rice aldehyde dehydrogenase7 is needed for seed maturation and viability. Plant Physiol 149:905–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AM, Zeeman SC, Smith SM (2005) Starch degradation. Annu Rev Plant Biol 56:73–98

    Article  CAS  PubMed  Google Scholar 

  • Soares EDA, Werth EG, Madroñero LJ, Ventura JA, Rodrigues SP, Hicks LM, Fernandes PM (2017) Label-free quantitative proteomic analysis of pre-flowering PMeV-infected Carica papaya L. J Proteom 151:275–283

    Article  CAS  Google Scholar 

  • Sreenivasulu N, Usadel B, Winter A, Radchuk V, Scholz U, Stein U, Weschke W, Strickert M, Close TJ, Stitt M, Graner A, Wobus U (2008) Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools. Plant Physiol 146:1738–1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudsiri C, Nattawat A, Kongchana P, Ritchie R (2016) Effect of magnetically treated water on germination and seedling growth of oil palm (Elaeis guineensis). Seed Sci Techn 44:267–280

    Article  Google Scholar 

  • Sun T, Gubler F (2004) Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol 55:197–223

    Article  CAS  PubMed  Google Scholar 

  • Tiedemann J, Neubohn B, Muntz K (2000) Different functions of vicilin and legumin are reflected in the histopattern of globulin mobilization during germination of vetch (Vicia sativa L.). Planta 211:1–12

    Article  CAS  PubMed  Google Scholar 

  • Tolleter D, Jaquinod M, Mangavel C, Passirani C, Saulnier P, Manon S, Teyssier E, Payet N, Avelange-Macherel MH, Macherel D (2007) Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by desiccation. Plant Cell 19:1580–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Chen F, Li X, Cao H, Ding M, Zhang C, Zuo J, Xu C, Xu J, Deng X (2016) Arabidopsis seed germination speed is controlled by SNL histone deacetylase-binding factor-mediated regulation of AUX1. Nat Commun 7:1341–1342

    Google Scholar 

  • Weitbrecht K, Kerstin M, Gerhard LM (2011) First off the mark: early seed germination. J Exp Bot 62:3289–3309

    Article  CAS  PubMed  Google Scholar 

  • White CN, Proebsting WM, Hedden P, Rivin CJ (2000) Gibberellins and seed development in maize. I. Evidence that gibberellin/abscisic acid balance governs germination versus maturation pathways. Plant Physiol 122:1081–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams HA, Bewley JD, Greenwood JS, Bourgault R, Mo B (2001) The storage cell walls in the endosperm of Asparagus officinalis L. seeds during development and following germination. Seed Sci Res 11:305–315

    CAS  Google Scholar 

  • Xu HH, Liu SJ, Song SH, Wang RX, Wang WQ, Song SQ (2016) Proteomics analysis reveals distinct involvement of embryo and endosperm proteins during seed germination in dormant and non-dormant rice seeds. Plant Physiol Biochem 103:219–242

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki Y (2003) β-Amylase in germinating millet seeds. Phytochem 64:935–939

    Article  CAS  Google Scholar 

  • Yang P, Li X, Wang X, Chen H, Chen F, Shen S (2007) Proteomic analysis of rice (Oryza sativa) seeds during germination. Proteomics 7:3358–3368

    Article  CAS  PubMed  Google Scholar 

  • Yang MF, Liu YJ, Liu Y, Chen H, Chen F, Shen SH (2009) Proteomic analysis of oil mobilization in seed germination and postgermination development of Jatropha curcas. J Proteome Res 8:1441–1451

    Article  CAS  PubMed  Google Scholar 

  • Zalewski K, Nitkiewicz B, Lahuta LB, Głowacka K, Socha A, Amarowicz R (2010) Effect of jasmonic acid–methyl ester on the composition of carbohydrates and germination of yellow lupine (Lupinus luteus L.) seeds. J Plant Physiol 167:967–973

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Sreenivasulu N, Weschke W, Stein N, Rudd S, Radchuk V, Potokina E, Scholz U, Schweizer P, Zierold U (2004) Large-scale analysis of the barley transcriptome based on expressed sequence tags. Plant J 40:276–290

    Article  PubMed  Google Scholar 

  • Zhang D, Chen L, Li D, Lv B, Chen Y, Chen J, Liang J (2014) OsRACK1 is involved in abscisic acid-and H2O2-mediated signaling to regulate seed germination in rice (Oryza sativa, L.). PLoS ONE 9:7120

    Google Scholar 

  • Zhang YX, Xu HH, Liu SJ, LiN Wang WQ, Møller IM, Song SQ (2016) Proteomic analysis reveals different involvement of embryo and endosperm proteins during aging of Yliangyou 2 hybrid rice seeds. Front Plant Sci 7:1394–1397

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Noman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaynab, M., Kanwal, S., Furqan, M. et al. Proteomic approach to address low seed germination in Cyclobalnopsis gilva . Biotechnol Lett 39, 1441–1451 (2017). https://doi.org/10.1007/s10529-017-2393-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-017-2393-3

Keywords

Navigation