Skip to main content

Advertisement

Log in

Escaped Miscanthus sacchariflorus reduces the richness and diversity of vegetation and the soil seed bank

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Prioritizing management efforts and funds for invasive species relies upon knowledge of their ecological impacts. Often, however, novel species have unknown effects and can exhibit long time lags before proliferating, making early management decisions difficult. The grasses Miscanthus sinensis, M. sacchariflorus, and their sterile hybrid M. × giganteus have been introduced to North America and elsewhere for horticultural and agricultural purposes, but little is known about their impacts on resident vegetation upon escape from cultivation. We compared the vegetation communities and soil seed bank of paired areas invaded and uninvaded by escaped M. sacchariflorus at ten sites in Ontario, Canada. Invaded plots had very few species other than M. sacchariflorus and had lower plant species abundance, richness, and diversity than did uninvaded plots, and effects were greater on the vegetation than on the seed bank. Invaded plots also had more live and dead standing biomass, taller vegetation, and greater litter biomass, along with decreased light penetration to the soil surface than in uninvaded plots. However, M. sacchariflorus did not produce a germinable seed bank. Our results suggest that the regional spread of M. sacchariflorus is currently limited by a lack of seed production/viability, but its occurrence along disturbance-prone roadways and drainages facilitates its local vegetative spread. The strong negative effects of M. sacchariflorus on the resident plant community should be considered in risk assessments and management planning for this and other Miscanthus species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • AAFC [Agriculture and Agri-Food Canada] (2010) Plant hardiness zones of Canada. Government of Canada, Ottawa, Canada. http://www.agr.gc.ca/atlas/agpv?webmap=78529700717d4cab81c13e9f9404ef10. Accessed 23 July 2014

  • Agindotan B, Okanu N, Oladeinde A, Voigt T, Long S, Gray M, Bradley C (2013) Detection of Switchgrass mosaic virus in Miscanthus and other grasses. Can J Plant Pathol 35:81–86

    Article  CAS  Google Scholar 

  • Ahonsi MO, Ames KA, Gray ME, Bradley CA (2013) Biomass reducing potential and prospective fungicide control of a new leaf blight of Miscanthus × giganteus caused by Leptosphaerulina chartarum. Bioenergy Res 6:737–745

    Article  CAS  Google Scholar 

  • Anderson EK, Voigt TB, Bollero GA, Hager AG (2011) Miscanthus × giganteus response to tillage and glyphosate. Weed Technol 25:356–362

    Article  CAS  Google Scholar 

  • Bakker J, Poschlod P, Strykstra R, Bekker R, Thompson K (1996) Seed banks and seed dispersal: important topics in restoration ecology. Acta Bot Neerl 45:461–490

    Article  Google Scholar 

  • Barksdale DN (2014) Evaluation of herbicide efficacy and application timing on Miscanthus. In: Webster T (ed) Proceedings of the Southern Weed Science Society 67th annual meeting. Southern Weed Science Society, Las Cruces, p 85

  • Barney JN, DiTomaso JM (2008) Nonnative species and bioenergy: are we cultivating the next invader? Bioscience 58:64–70

    Article  Google Scholar 

  • Belzile F, Labbe J, LeBlanc M, Lavoie C (2010) Seeds contribute strongly to the spread of the invasive genotype of the common reed (Phragmites australis). Biol Invasion 12:2243–2250

    Article  Google Scholar 

  • Bonin CL, Heaton EA, Barb J (2014) Miscanthus sacchariflorus—biofuel parent or new weed? GCB Bioenergy, in press

  • Brisson J, de Blois S, Lavoie C (2010) Roadside as invasion pathway for common reed (Phragmites australis). Invasive Plant Sci Manag 3:506–514

    Article  Google Scholar 

  • Burk CJ, Lauermann SD, Mesrobian AL (1976) Spread of several introduced or recently invading aquatics in western Massachusetts. Rhodora 78:767–772

    Google Scholar 

  • Chou C (2009) Miscanthus plants used as an alternative biofuel material: the basic studies on ecology and molecular evolution. Renew Energy 34:1908–1912

    Article  CAS  Google Scholar 

  • Colwell RK (2013) EstimateS: statistical estimation of species richness and shared species from samples version 9. http://purl.oclc.org/estimates

  • Cunningham DC, Barry SC, Woldendorp G, Burgess MB (2004) A framework for prioritizing sleeper weeds for eradication. Weed Technol 18:1189–1193

    Article  Google Scholar 

  • Davies KW, Svejcar TJ (2008) Comparison of medusahead-invaded and noninvaded Wyoming big sagebrush steppe in southeastern Oregon. Rangel Ecol Manage 61:623–629

    Article  Google Scholar 

  • Deng Z, Chen X, Xie Y, Li X, Pan Y, Li F (2013) Effects of size and vertical distribution of buds on sprouting and plant growth of the clonal emergent macrophyte Miscanthus sacchariflorus (Poaceae). Aquat Bot 104:121–126

    Article  Google Scholar 

  • Dore WG, McNeill J (1980) Grasses of Ontario. Agriculture Canada Monograph 26. Canadian Government Publishing Centre, Hull, Canada

  • Downey PO, Scanlon TJ, Hosking JR (2010) Prioritizing weed species based on their threat and ability to impact on biodiversity: a case study from New South Wales. Plant Prot Q 25:111–126

    Google Scholar 

  • Environment Canada (2014) 1981–2010 climate normals and averages. Environment Canada, Toronto, Canada. http://climate.weather.gc.ca/climate_normals/index_e.html. Accessed 29 July 2014

  • Everman WJ, Lindsey AJ, Henry GM, Glaspie CF, Phillips K, McKenney C (2011) Response of Miscanthus × giganteus and Miscanthus sinensis to postemergence herbicides. Weed Technol 25:398–403

    Article  CAS  Google Scholar 

  • Flory SL, Lorentz KA, Gordon DR, Sollenberger LE (2012) Experimental approaches for evaluating the invasion risk of biofuel crops. Environ Res Lett 7:045904

    Article  Google Scholar 

  • Foster BL, Gross KL (1997) Partitioning the effects of plant biomass and litter on Andropogon gerardi in old-field vegetation. Ecology 78:2091–2104

    Article  Google Scholar 

  • Gilliam CH, Keever GJ, Eakes DJ, Fare DC (1992) Postemergence applied herbicides for use on ornamental grasses. J Environ Hortic 10:136–139

    CAS  Google Scholar 

  • Gioria M, Jarosik V, Pysek P (2014) Impact of invasions by alien plants on soil seed bank communities: emerging patterns. Perspect Plant Ecol Evol Syst 16:132–142

    Article  Google Scholar 

  • Gross KL (1990) A comparison of methods for estimating seed numbers in the soil. J Ecol 78:1079–1093

    Article  Google Scholar 

  • Gurevitch J, Fox GA, Wardle GM, Taub D, Inderjit (2011) Emergent insights from the synthesis of conceptual frameworks for biological invasions. Ecol Lett 14:407–418

    Article  CAS  PubMed  Google Scholar 

  • Hager HA (2004) Differential effects of Typha litter and plants on invasive Lythrum salicaria seedling survival and growth. Biol Invasion 6:433–444

    Article  Google Scholar 

  • Hager HA, McCoy KD (1998) The implications of accepting untested hypotheses: a review of the effects of purple loosestrife (Lythrum salicaria) in North America. Biodivers Conserv 7:1069–1079

    Article  Google Scholar 

  • Hager HA, Rupert R, Quinn LD, Newman JA (2014a) Effect of escaped, naturalized Miscanthus sacchariflorus on resident vegetation and soil seed bank. V1. Agri-Environmental Research Data Repository. http://hdl.handle.net/10864/10805

  • Hager HA, Sinasac SE, Gedalof Z, Newman JA (2014b) Predicting potential global distributions of two Miscanthus grasses: implications for horticulture, biofuel production, and biological invasions. PLoS ONE 9:e100032

    Article  PubMed Central  PubMed  Google Scholar 

  • Hawkes CV, Wren IF, Herman DJ, Firestone MK (2005) Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecol Lett 8:976–985

    Article  Google Scholar 

  • Heaton EA, Flavell RB, Mascia PN, Thomas SR, Dohleman FG, Long SP (2008) Herbaceous energy crop development: recent progress and future prospects. Curr Opin Biotechnol 19:202–209

    Article  CAS  PubMed  Google Scholar 

  • Hedenec P, Novotny D, Ust’ak S, Honzik R, Kovarova M, Simackova H, Frouz J (2014) Allelopathic effect of new introduced biofuel crops on the soil biota: a comparative study. Eur J Soil Biol 63:14–20

    Article  CAS  Google Scholar 

  • Hejda M, Pysek P, Jarosik V (2009) Impact of invasive plants on the species richness, diversity and composition of invaded communities. J Ecol 97:393–403

    Article  Google Scholar 

  • Hodkinson TR, Chase MW, Lledo MD, Salamin N, Renvoize SA (2002) Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. J Plant Res 115:381–392

    Article  CAS  PubMed  Google Scholar 

  • Holmes PM, Cowling RM (1997) Diversity, composition and guild structure relationships between soil-stored seed banks and mature vegetation in alien plant-invaded South African fynbos shrublands. Plant Ecol 133:107–122

    Article  Google Scholar 

  • Hulme PE, Pysek P, Jarosik V, Pergl J, Schaffner U, Vila M (2013) Bias and error in understanding plant invasion impacts. Trends Ecol Evol 28:212–218

    Article  PubMed  Google Scholar 

  • Ishii J, Lu S, Funakoshi S, Shimizu Y, Omasa K, Washitani I (2009) Mapping potential habitats of threatened plant species in a moist tall grassland using hyperspectral imagery. Biodivers Conserv 18:2521–2535

    Article  Google Scholar 

  • Ishikawa S (1988) Floodplain vegetation of the Shimanto River in Shikoku Japan I. Arrangement of the main plant communities developing on the bars in the lower course. Mem Fac Sci Kochi Univ Ser D Biol 9:25–32

    Google Scholar 

  • Jensen E, Farrar K, Thomas-Jones S, Hastings A, Donnison I, Clifton-Brown J (2011) Characterization of flowering time diversity in Miscanthus species. GCB Bioenergy 3:387–400

    Article  Google Scholar 

  • Lee KY, Zhang L, Lee G (2012a) Botanical and germinating characteristics of Miscanthus species native to Korea. Hortic Environ Biotechnol 53:490–496

    Article  Google Scholar 

  • Lee MR, Flory SL, Phillips RP (2012b) Positive feedbacks to growth of an invasive grass through alteration of nitrogen cycling. Oecologia 170:457–465

    Article  PubMed  Google Scholar 

  • Lelong B, Lavoie C, Jodoin Y, Belzile F (2007) Expansion pathways of the exotic common reed (Phragmites australis): a historical and genetic analysis. Divers Distrib 13:430–437

    Article  Google Scholar 

  • Levine J, Vila M, D’Antonio C, Dukes J, Grigulis K, Lavorel S (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc R Soc Lond B Biol Sci 270:775–781

    Article  Google Scholar 

  • Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19:209–227

    Article  CAS  Google Scholar 

  • Li X, Grey TL, Blanchett BH, Lee RD, Webster TM, Vencill WK (2013) Tolerance evaluation of vegetatively established Miscanthus × giganteus to herbicides. Weed Technol 27:735–740

    Article  CAS  Google Scholar 

  • Mack R, Erneberg M (2002) The United States naturalized flora: largely the product of deliberate introductions. Ann Mo Bot Gard 89:176–189

    Article  Google Scholar 

  • Madeja G, Umek L, Havens K (2012) Differences in seed set and fill of cultivars of Miscanthus grown in USDA cold hardiness zone 5 and their potential for invasiveness. J Environ Hortic 30:42–50

    Google Scholar 

  • Meyer MH, Tchida CL (1999) Miscanthus Anderss. produces viable seed in four USDA hardiness zones. J Environ Hortic 17:137–140

    Google Scholar 

  • Meyer MH, Paul J, Anderson NO (2010) Competive ability of invasive Miscanthus biotypes with aggressive switchgrass. Biol Invasion 12:3809–3816

    Article  Google Scholar 

  • Meyerson LA, Saltonstall K, Windham L, Kiviat E, Findlay S (2000) A comparison of Phragmites australis in freshwater and brackish marsh environments in North America. Wetl Ecol Manag 8:89–103

    Article  CAS  Google Scholar 

  • Moron D, Lenda M, Skorka P, Szentgyorgyi H, Settele J, Woyciechowski M (2009) Wild pollinator communities are negatively affected by invasion of alien goldenrods in grassland landscapes. Biol Conserv 142:1322–1332

    Article  Google Scholar 

  • Nishihiro J, Araki S, Fujiwara N, Washitani I (2004) Germination characteristics of lakeshore plants under an artificially stabilized water regime. Aquat Bot 79:333–343

    Article  Google Scholar 

  • Nishiwaki A, Mizuguti A, Kuwabara S, Toma Y, Ishigaki G, Miyashita T, Yamada T, Matuura H, Yamaguchi S, Rayburn AL, Akashi R, Stewart JR (2011) Discovery of natural Miscanthus (Poaceae) triploid plants in sympatric populations of Miscanthus sacchariflorus and Miscanthus sinensis in southern Japan. Am J Bot 98:154–159

    Article  PubMed  Google Scholar 

  • Otfinowski R, Kenkel NC, Van Acker RC (2008) Reconciling seed dispersal and seed bank observations to predict smooth brome (Bromus inermis) invasions of a northern prairie. Invasive Plant Sci Manag 1:279–286

    Article  Google Scholar 

  • Plazek A, Dubert F, Koscielniak J, Tatrzanska M, Maciejewski M, Gondek K, Zurek G (2014) Tolerance of M. × giganteus to salinity depends on initial weight of rhizomes as well as high accumulation of potassium and proline in leaves. Ind Crops Prod 52:278–285

    Article  CAS  Google Scholar 

  • Pohl RW (1963) Phytogeographic notes on Rottboellia, Paspalum, and Miscanthus (Gramineae). Rhodora 65:146–147

    Google Scholar 

  • Prasifka JR, Bradshaw JD, Gray ME (2012) Potential biomass reductions to M. × giganteus by stem-boring caterpillars. Environ Entomol 41:865–871

    Article  Google Scholar 

  • Pyter R, Heaton E, Dohleman F, Voigt T, Long S (2009) Agronomic experiences with Miscanthus × giganteus in Illinois, USA. In: Mielenz J (ed) Biofuels: methods and protocols. Springer, New York, pp 41–52

    Chapter  Google Scholar 

  • Quinn LD, Allen DJ, Stewart JR (2010) Invasiveness potential of Miscanthus sinensis: implications for bioenergy production in the United States. GCB Bioenergy 2:310–320

    Article  Google Scholar 

  • Quinn LD, Matlaga DP, Stewart JR, Davis AS (2011) Empirical evidence of long-distance dispersal in Miscanthus sinensis and Miscanthus × giganteus. Invasive Plant Sci Manag 4:142–150

    Article  Google Scholar 

  • Quinn L, Stewart J, Yamada T, Toma Y, Saito M, Shimoda K, Fernández F (2012) Environmental tolerances of Miscanthus sinensis in invasive and native populations. Bioenerg Res 5:139–148

    Article  Google Scholar 

  • Raghu S, Anderson RC, Daehler CC, Davis AS, Wiedenmann RN, Simberloff D, Mack RN (2006) Adding biofuels to the invasive species fire? Science 313:1742

    Article  CAS  PubMed  Google Scholar 

  • Randall JM, Morse LE, Benton N, Hiebert R, Lu S, Killeffer T (2008) The invasive species assessment protocol: a tool for creating regional and national lists of invasive nonnative plants that negatively impact biodiversity. Invasive Plant Sci Manag 1:36–49

    Article  Google Scholar 

  • Rice KJ (1989) Impacts of seed banks on grassland community structure and population dynamics. In: Leck MA, Parker VT, Simpson RL (eds) Ecology of soil seed banks. Academic Press, San Diego, pp 211–230

    Chapter  Google Scholar 

  • Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107

    Article  Google Scholar 

  • Robertson S, Hickman K (2012) Aboveground plant community and seed bank composition along an invasion gradient. Plant Ecol 213:1461–1475

    Article  Google Scholar 

  • Ruprecht E, Szabo A (2012) Grass litter is a natural seed trap in long-term undisturbed grassland. J Veg Sci 23:495–504

    Article  Google Scholar 

  • Scauflaire J, Gourgue M, Foucart G, Renard F, Vandeputte F, Munaut F (2013) Fusarium miscanthi and other Fusarium species as causal agents of M. × giganteus rhizome rot. Eur J Plant Pathol 137:1–3

    Article  Google Scholar 

  • Scurlock JMO (1999) Miscanthus: a review of European experience with a novel energy crop. ORNL/TM-13732. Oak Ridge National Laboratory, Oak Ridge, TN

  • Stewart JR, Toma Y, Fernandez FG, Nishiwaki A, Yamada T, Bollero G (2009) The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development, in its native range in Japan: a review. GCB Bioenergy 1:126–153

    Article  Google Scholar 

  • Strubbe D, Shwartz A, Chiron F (2011) Concerns regarding the scientific evidence informing impact risk assessment and management recommendations for invasive birds. Biol Conserv 144:2112–2118

    Article  Google Scholar 

  • ter Braak CJF, Smilauer P (2012) Canoco reference manual and user’s guide: software for ordination (version 5.0). Microcomputer Power, Ithaca, USA

  • Xiong SJ, Nilsson C (1999) The effects of plant litter on vegetation: a meta-analysis. J Ecol 87:984–994

    Article  Google Scholar 

  • Yakimowski SB, Hager HA, Eckert CG (2005) Limits and effects of invasion by the nonindigenous wetland plant Lythrum salicaria (purple loosestrife): a seed bank analysis. Biol Invasion 7:687–698

    Article  Google Scholar 

  • Yamasaki S (1990) Population dynamics in overlapping zones of Phragmites australis and Miscanthus sacchariflorus. Aquat Bot 36:367–377

    Article  Google Scholar 

  • Zub HW, Brancourt-Hulmel M (2010) Agronomic and physiological performances of different species of Miscanthus, a major energy crop. Rev Agron Sustain Dev 30:201–214

    Article  Google Scholar 

Download references

Acknowledgments

We thank Rachelle Bisaillon, Hajnal Kovacs, Emily Palmer, Aurora Patchett, and Becky Viejou for assistance in the field, laboratory, and greenhouse; Carole Ann LaCroix for assistance with plant identification; Kim Bolton for performing soil analyses; and two anonymous reviewers. We gratefully acknowledge all participating landowners for allowing access to their properties. Funding was provided by the Ontario Ministry of Agriculture and Food and Ministry of Rural Affairs, and a Mitacs Elevate post-doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather A. Hager.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hager, H.A., Rupert, R., Quinn, L.D. et al. Escaped Miscanthus sacchariflorus reduces the richness and diversity of vegetation and the soil seed bank. Biol Invasions 17, 1833–1847 (2015). https://doi.org/10.1007/s10530-014-0839-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-014-0839-2

Keywords

Navigation