Skip to main content

Advertisement

Log in

The palm Mauritia flexuosa, a keystone plant resource on multiple fronts

  • Review Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Keystone species are organisms, usually animals of higher trophic levels, that have large ecological impacts relative to their abundance. A recent extension of this concept recognizes hyperkeystone species, such as humans, which affect other keystone species and often play a key role in multiple ecosystem dynamics. Following a systematic review, we propose that the Neotropical palm species Mauritia flexuosa, though abundant locally, plays a role resembling that of a hyperkeystone species. First, it provides multiple types of key plant resources (food, nest sites, habitat) to a wide variety of species (at least 940 vertebrate species). Of vertebrates that directly use this palm as a food or nest resource (at least 74), at least 8 highly dependent on it for survival, 28 are threatened species, and at least 19 are keystone species themselves. This implies that a change in the abundance or distribution of Mauritia flexuosa is likely to have multiple cascading effects on Neotropical ecosystems. In addition, we highlight that this palm is also important for many invertebrates and other organisms and provides multiple ecosystem services, such as carbon sequestration. This vast ecological role of M. flexuosa, combined with its provision of a host of products to people, makes the species unique and worth prioritizing in conservation and plans for sustainable management across the Neotropics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acevedo-Quintero JF, Zamora-Abrego JG (2016) Papel de los mamíferos en los procesos de dispersión y depredación de semillas de Mauritia flexuosa (Arecaceae) en la Amazonía colombiana. Rev Biol Trop 64:5–15

    PubMed  Google Scholar 

  • Aquino R (2005) Alimentación de mamíferos de caza en los «aguajales» de la Reserva Nacional de Pacaya-Samiria (Iquitos, Perú). Rev Peruana Biol 12:417–425

    Google Scholar 

  • Bakker VJ, Kelt DA (2000) Scale-dependent patterns in body size distributions of neotropical mammals. Ecology 81(12):3530–3547

    Google Scholar 

  • Baños-Villalba A, Blanco G, Díaz-Luque JA et al (2017) Seed dispersal by macaws shapes the landscape of an Amazonian ecosystem. Sci Rep 7(1):7373

    PubMed  PubMed Central  Google Scholar 

  • Bednarz JC, Ripper D, Radley PM (2004) Emerging concepts and research directions in the study of cavity-nesting birds: keystone ecological processes. Condor 106:1–4

    Google Scholar 

  • Bonnet X, Brischoux F, Pearson D et al (2009) Beach rock as a keystone habitat for amphibious sea snakes. Environ Conserv 36:62–70

    Google Scholar 

  • Braga TMP, Rebêlo GH (2014) Traditional knowledge of the fishermen of the lower Juruá river: aspects related to the feeding habits of fish in the region [conhecimento tradicional dos pescadores do baixo rio Juruá: Aspectos relacionados aos hábitos alimentares dos peixes da região]. Interciencia 39:659–665

    Google Scholar 

  • Brewer SW, Rejmánek M (1999) Small rodents as significant dispersers of tree seeds in a Neotropical forest. J Veg Sci 10(2):165–174

    Google Scholar 

  • Brightsmith DJ (2005) Parrot nesting in southeastern Peru: seasonal patterns and keystone trees. Wilson Bull 117:296–305

    Google Scholar 

  • Brokamp G, Valderrama N, Mittelbach M et al (2011) Trade in palm products in north-western South America. Bot Rev 77:571–606

    Google Scholar 

  • Cerda H, Martinez R, Briceno N et al (2001) Palm worm:(Rhynchophorus palmarum) traditional food in Amazonas, Venezuela—nutritional composition, small scale production and tourist palatability. Ecol Food Nutr 40:13–32

    Google Scholar 

  • Chacón N, Herrera R, Méndez C et al (2018) Mechanisms involved in soil ammonium production in a Mauritia flexuosa palm swamp community. Wetlands 38(3):641–646

    Google Scholar 

  • Davic RD (2003) Linking keystone species and functional groups: a new operational definition of the keystone species concept. Conserv Ecol 7(1):r11. http://www.consecol.org/vol7/iss1/resp11

    Google Scholar 

  • de Barros Leite A, Brancalion PH, Guevara R et al (2012) Differential seed germination of a keystone palm (Euterpe edulis) dispersed by avian frugivores. J Trop Ecol 28(6):615–618

    Google Scholar 

  • De Grenade R (2013) Date palm as a keystone species in Baja California peninsula, Mexico oases. J Arid Environ 94:59–67

    Google Scholar 

  • De Visser S, Thebault E, De Ruiter PC (2013) Ecosystem engineers, keystone species. Springer, Dordrecht

    Google Scholar 

  • del Hoyo J, Collar NJ, Christie DA et al (2017) Handbook of the birds of the world. Lynx Editions, Barcelona

    Google Scholar 

  • Diaz-Martin Z, Swamy V, Terborgh J et al (2014) Identifying keystone plant resources in an Amazonian forest using a long-term fruit-fall record. J Trop Ecol 30:291–301

    Google Scholar 

  • Draper FC, Roucoux KH, Lawson IT et al (2014) The distribution and amount of carbon in the largest peatland complex in Amazonia. Environ Res Lett 9(12):124017

    Google Scholar 

  • Ellison AM, Bank MS, Clinton BD et al (2005) Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front Ecol Environ 3:479–486

    Google Scholar 

  • Endress BA, Horn CM, Gilmore MP (2013) Mauritia flexuosa palm swamps: composition, structure and implications for conservation and management. For Ecol Manage 302:346–353

    Google Scholar 

  • Fouquet A, Gilles A, Vences M et al (2007) Underestimation of species richness in Neotropical frogs revealed by mtDNA analyses. PLoS ONE 2:e1109

    PubMed  PubMed Central  Google Scholar 

  • Fraija N, Fajardo GE (2006) Caracterización de la fauna del orden Lepidoptera (rhopalocera) en cinco diferentes localidades de los llanos orientales colombianos. Acta Biol Colomb 11:55–68

    Google Scholar 

  • Galeano A, Urrego LE, Sánchez M et al (2015) Environmental drivers for regeneration of Mauritia flexuosa Lf in Colombian Amazonian swamp forest. Aquat Bot 123:47–53

    Google Scholar 

  • Gibbons P, Lindenmayer D, Fischer J et al (2008) The future of scattered trees in agricultural landscapes. Conserv Biol 22:1309–1319

    CAS  PubMed  Google Scholar 

  • Gilmore MP, Endress BA, Horn CM (2013) The socio-cultural importance of Mauritia flexuosa palm swamps (aguajales) and implications for multi-use management in two Maijuna communities of the Peruvian Amazon. J Ethnobiol Ethnomed 9:29

    PubMed  PubMed Central  Google Scholar 

  • Goodman RC, Phillips OL, del Castillo Torres D et al (2013) Amazon palm biomass and allometry. For Ecol Manage 310:994–1004

    Google Scholar 

  • Goulding M, Smith N (2007) Palms: sentinels for Amazon conservation. Missouri Botanical Garden Press, St. Louis

    Google Scholar 

  • Gurgel-Gonçalves R, Cura C, Schijman AG et al (2012) Infestation of Mauritia flexuosa palms by triatomines (Hemiptera: Reduviidae), vectors of Trypanosoma cruzi and Trypanosoma rangeli in the Brazilian savanna. Acta Trop 121:105–111

    PubMed  Google Scholar 

  • Heithaus MR, Frid A, Wirsing AJ et al (2008) Predicting ecological consequences of marine top predator declines. Trends Ecol Evol 23:202–210

    PubMed  Google Scholar 

  • Horn CM, Gilmore MP, Endress BA (2012) Ecological and socio-economic factors influencing aguaje (Mauritia flexuosa) resource management in two indigenous communities in the Peruvian Amazon. For Ecol Manage 267:93–103

    Google Scholar 

  • Khorsand Rosa R, Koptur S (2013) New findings on the pollination biology of Mauritia flexuosa (Arecaceae) in Roraima, Brazil: linking dioecy, wind, and habitat. Am J Bot 100(3):613–621

    PubMed  Google Scholar 

  • Koolen HH, da Silva FM, Gozzo FC et al (2013) Antioxidant, antimicrobial activities and characterization of phenolic compounds from buriti (Mauritia flexuosa L. f.) by UPLC–ESI-MS/MS. Food Res Int 51:467–473

    CAS  Google Scholar 

  • Lähteenoja O, Ruokolainen K, Schulman L et al (2009) Amazonian peatlands: an ignored C sink and potential source. Glob Chang Biol 15(9):2311–2320

    Google Scholar 

  • Lasso CA, Colonnello G, Moraes M (2016) XIV. Morichales, cananguchales y otros palmares inundables de Suramérica. Parte II: Colombia, Venezuela, Brasil, Perú, Bolivia, Paraguay, Uruguay y Argentina. Serie Editorial Recursos Hidrobiológicos y Pesqueros Continentales de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá

  • Manning AD, Fischer J, Lindenmayer DB (2006) Scattered trees are keystone structures–implications for conservation. Biol Conserv 132:311–321

    Google Scholar 

  • Mäntylä E, Klemola T, Laaksonen T (2011) Birds help plants: a meta-analysis of top-down trophic cascades caused by avian predators. Oecologia 165(1):143–151

    PubMed  Google Scholar 

  • Manzi M, Coomes OT (2009) Managing Amazonian palms for community use: a case of aguaje palm (Mauritia flexuosa) in Peru. For Ecol Manage 257:510–517

    Google Scholar 

  • Martins RC, Filgueiras TS, Ulysses P (2012) Ethnobotany of Mauritia flexuosa (Arecaceae) in a maroon community in central Brazil. Econ Bot 66:91–98

    Google Scholar 

  • Mills LS, Soulé ME, Doak DF (1993) The keystone-species concept in ecology and conservation. BioScience 43:219–224

    Google Scholar 

  • Mittermeier RA, Rylands AB, Wilson DE (2013) Handbook of the Mammals of the World. Primates, vol 3. Lynx Editions, Barcelona

    Google Scholar 

  • Mouquet N, Gravel D, Massol F et al (2013) Extending the concept of keystone species to communities and ecosystems. Ecol Lett 16:1–8

    PubMed  Google Scholar 

  • Nason JD, Herre EA, Hamrick J (1998) The breeding structure of a tropical keystone plant resource. Nature 391:685–687

    CAS  Google Scholar 

  • Paine RT (1995) A conversation on refining the concept of keystone species. Conserv Biol 9(4):962–964

    Google Scholar 

  • Paine RT (1969) A note on trophic complexity and community stability. Am Nat 103:91–93

    Google Scholar 

  • Peres CA (2000) Identifying keystone plant resources in tropical forests: the case of gums from Parkia pods. J Trop Ecol 16:287–317

    Google Scholar 

  • Porro R, Miller RP, Tito MR et al (2012) Agroforestry in the Amazon region: a pathway for balancing conservation and development. In: Nair PKR (ed) Agroforestry-the future of global land use. Springer, Dordrecht

    Google Scholar 

  • Power ME, Tilman D, Estes JA et al (1996) Challenges in the quest for keystones: identifying keystone species is difficult—but essential to understanding how loss of species will affect ecosystems. Bioscience 46(8):609–620

    Google Scholar 

  • Ramirez N, Brito Y (1990) Reproductive biology of a tropical palm swamp community in the Venezuelan llanos. Am J Bot 77:1260–1271

    Google Scholar 

  • Robinson JG, Redford KH (1986) Body size, diet, and population density of Neotropical forest mammals. Am Nat 128(5):665–680

    Google Scholar 

  • Roucoux KH, Lawson IT, Jones TD et al (2013) Vegetation development in an Amazonian peatland. Palaeogeogr Palaeoclimatol Palaeoecol 374:242–255

    Google Scholar 

  • Schiesari L, Gordo M, Hödl W (2003) Treeholes as calling, breeding, and developmental sites for the Amazonian canopy frog, Phrynohyas resinifictrix (Hylidae). Copeia 2:263–272

    Google Scholar 

  • Schlee M (2005) King vultures (Sarcoramphus papa) forage in moriche and cucurit palm stands. J Raptor Res 39(4):458–461

    Google Scholar 

  • Stevenson P (2005) Potential keystone plant species for the frugivore community at Tinigua Park, Colombia. In: Dew JL, Boubli JP (eds) Tropical fruits and frugivores: the search for strong interactors. Springer, Dordrecht

    Google Scholar 

  • Sinclair ARE (2003) Mammal population regulation, keystone processes and ecosystem dynamics. Phil Trans R Soc B 358(1438):1729–1740

    CAS  PubMed  Google Scholar 

  • Stagoll K, Lindenmayer DB, Knight E et al (2012) Large trees are keystone structures in urban parks. Conserv Lett 5:115–122

    Google Scholar 

  • Tella JL, Baños-Villalba A, Hernández-Brito D et al (2015) Parrots as overlooked seed dispersers. Front Ecol Environ 13(6):338–339

    Google Scholar 

  • Ter Steege H, Pitman NC, Sabatier D et al (2013) Hyperdominance in the Amazonian tree flora. Science 342:1243092

    PubMed  Google Scholar 

  • Terborgh JW (1986) Keystone plant resources in the tropical forest. In: Soule I, Michael E (eds) Conservation biology: an evolutionary-ecological perspective. Sinauer Associates, Sunderland

    Google Scholar 

  • Trolle M, Noss AJ, De Lima ES et al (2006) Camera-trap studies of maned wolf density in the Cerrado and the Pantanal of Brazil. Biodivers Conserv 16:1197–1204

    Google Scholar 

  • Tubelis DP (2009) Veredas and their use by birds in the Cerrado, South America: a review. Biota Neotrop 9:363–374

    Google Scholar 

  • Vegas-Vilarrubia T, Baritto F, López P et al (2010) Tropical histosols of the lower Orinoco Delta, features and preliminary quantification of their carbon storage. Geoderma 155:280–288

    CAS  Google Scholar 

  • Virapongse A, Endress BA, Gilmore MP et al (2017) Ecology, livelihoods, and management of the Mauritia flexuosa palm in South America. Glob Ecol Conserv 10:70–92

    Google Scholar 

  • Von Humboldt A, Bonpland A (1853) Personal narrative of travels to the equinoctial regions of America: during the years 1799–1804. Henry G, Bohn

    Google Scholar 

  • Waller DM, Alverson WS (1997) The white-tailed deer: a keystone herbivore. Wildlife Society Bulletin (1973–2006). 25:217–226

    Google Scholar 

  • Woodward G, Ebenman B, Emmerson M et al (2005) Body size in ecological networks. Trends Ecol Evol 20:402–409

    PubMed  Google Scholar 

  • Worm B, Paine RT (2016) Humans as a hyperkeystone species. Trends Ecol Evol 31:600–607

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yntze van der Hoek.

Additional information

Communicated by Daniel Sanchez Mata.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 19 kb)

Supplementary material 2 (XLSX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Hoek, Y., Álvarez Solas, S. & Peñuela, M.C. The palm Mauritia flexuosa, a keystone plant resource on multiple fronts. Biodivers Conserv 28, 539–551 (2019). https://doi.org/10.1007/s10531-018-01686-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-018-01686-4

Keywords

Navigation