Skip to main content
Log in

Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: a review

  • Review Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Pharmaceuticals and personal care products (PPCPs) have been the focus of much recent research as concerns rise about their occurrence in bodies of water worldwide. In an effort to characterize the risk and determine the prevalence of these micropollutants in lakes and rivers, many researchers are examining PPCP removal from impaired water during wastewater treatment and water recycling (soil passage) processes. Biodegradation studies and projects considering combinations of biodegradation and other removal processes have been conducted over a wide range of compound categories and therapeutic classes, as well as across different systems and scales of study. This review summarizes the extent of PPCP removal observed in these various systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

HRT:

Hydraulic retention time

MBR:

Membrane bioreactor

NSAID:

Non-steroidal anti-inflammatory drug

PPCP:

Pharmaceutical and personal care product

SBR:

Sequencing batch reactor

SRT:

Solids retention time

WWTP:

Wastewater treatment plant

References

  • Andersen H, Siegrist H, Halling-Sorensen B, Ternes TA (2003) Fate of estrogens in a municipal sewage treatment plant. Environ Sci Technol 37:4021–4026. doi:10.1021/es026192a

    Article  PubMed  CAS  Google Scholar 

  • Ankley GT, Brooks BW, Huggett DB, Sumpter JP (2007) Repeating history: pharmaceuticals in the environment. Environ Sci Technol 41:8211–8217

    Article  PubMed  CAS  Google Scholar 

  • Ashton D, Hilton M, Thomas KV (2004) Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom. Sci Total Environ 333:167–184. doi:10.1016/j.scitotenv.2004.04.062

    Article  PubMed  CAS  Google Scholar 

  • Baker JR, Gamberger D, Mihelcic JR, Sabljic A (2004) Evaluation of artificial intelligence based models for chemical biodegradability prediction. Molecules 9:989–1003. doi:10.3390/91200989

    Article  PubMed  CAS  Google Scholar 

  • Baronti C, Curini R, D’Ascenzo G, Di Corcia A, Gentili A, Samperi R (2000) Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water. Environ Sci Technol 34:5059–5066. doi:10.1021/es001359q

    Article  CAS  Google Scholar 

  • Batt AL, Kim S, Aga DS (2006) Enhanced biodegradation of iopromide and trimethoprim in nitrifying activated sludge. Environ Sci Technol 40:7367–7373. doi:10.1021/es060835v

    Article  PubMed  CAS  Google Scholar 

  • Bendz D, Paxéus NA, Ginn TR, Loge FJ (2005) Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Höje River in Sweden. J Hazard Mater 122:195–204. doi:10.1016/j.jhazmat.2005.03.012

    Article  PubMed  CAS  Google Scholar 

  • Bernhard M, Müller J, Knepper TP (2006) Biodegradation of persistent polar pollutants in wastewater: comparison of an optimised lab-scale membrane bioreactor and activated sludge treatment. Water Res 40:3419–3428. doi:10.1016/j.watres.2006.07.011

    Article  PubMed  CAS  Google Scholar 

  • Boethling RS, Lynch DG, Jaworska JS, Tunkel JL, Thom GC, Webb S (2004) Using Biowin (TM), Bayes, and batteries to predict ready biodegradability. Environ Toxicol Chem 23:911–920. doi:10.1897/03-280

    Article  PubMed  CAS  Google Scholar 

  • Boyd GR, Zhang S, Grimm DA (2005) Naproxen removal from water by chlorination and biofilm processes. Water Res 39:668–676. doi:10.1016/j.watres.2004.11.013

    Article  PubMed  CAS  Google Scholar 

  • Bradley PM, Barber LB, Kolpin DW, McMahon PB, Chapelle FH (2007) Biotransformation of caffeine, cotinine, and nicotine in stream sediments: implications for use as wastewater indicators. Environ Toxicol Chem 26:1116–1121. doi:10.1897/06-483R.1

    Article  PubMed  CAS  Google Scholar 

  • Buser HR, Poiger T, Muller MD (1999) Occurrence and environmental behavior of the chiral pharmaceutical drug ibuprofen in surface waters and in wastewater. Environ Sci Technol 33:2529–2535. doi:10.1021/es981014w

    Article  CAS  Google Scholar 

  • Carballa M, Omil F, Lema JM, Llompart M, Garcia-Jares C, Rodriguez I, Gomez M, Ternes T (2004) Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res 38:2918–2926. doi:10.1016/j.watres.2004.03.029

    Article  PubMed  CAS  Google Scholar 

  • Carballa M, Omil F, Lema JM, Llompart M, Garcia C, Rodriguez I, Gomez M, Ternes T (2005) Behaviour of pharmaceuticals and personal care products in a sewage treatment plant of northwest Spain. Water Sci Technol 52:29–35. doi:10.1007/1-4020-3297-8_3

    Article  PubMed  CAS  Google Scholar 

  • Carballa M, Omil F, Alder AC, Lema JM (2006) Comparison between the conventional anaerobic digestion of sewage sludge and its combination with a chemical or thermal pre-treatment concerning the removal of pharmaceuticals and personal care products. Water Sci Technol 53:109–117. doi:10.2166/wst.2006.241

    PubMed  CAS  Google Scholar 

  • Carballa M, Omil F, Lema JM (2007a) Calculation methods to perform mass balances of micropollutants in sewage treatment plants. Application to pharmaceutical and personal care products (PPCPs). Environ Sci Technol 41:884–890. doi:10.1021/es061581g

    Article  PubMed  CAS  Google Scholar 

  • Carballa M, Omil F, Ternes T, Lema JM (2007b) Fate of pharmaceutical and personal care products (PPCPs) during anaerobic digestion of sewage sludge. Water Res 41:2139–2150. doi:10.1016/j.watres.2007.02.012

    Article  PubMed  CAS  Google Scholar 

  • Carucci A, Cappai G, Piredda M (2006) Biodegradability and toxicity of pharmaceuticals in biological wastewater treatment plants. J Environ Sci Health Part A 41:1831–1842

    CAS  Google Scholar 

  • Castiglioni S, Bagnati R, Fanelli R, Pomati F, Calamari D, Zuccato E (2006) Removal of pharmaceuticals in sewage treatment plants in Italy. Environ Sci Technol 40:357–363. doi:10.1021/es050991m

    Article  PubMed  CAS  Google Scholar 

  • Choong AMF, Teo SL-M, Leow JL, Koh HL, Ho PCL (2006) A preliminary ecotoxicity study of pharmaceuticals in the marine environment. J Toxicol Environ Health Part A 69:1959–1970. doi:10.1080/15287390600751371

    Article  PubMed  CAS  Google Scholar 

  • Cirja M, Zühlke S, Ivashechkin P, Schäffer A, Corvini PFX (2006) Fate of a 14C-labeled nonylphenol isomer in a laboratory-scale membrane bioreactor. Environ Sci Technol 40:6131–6136. doi:10.1021/es060668z

    Article  PubMed  CAS  Google Scholar 

  • Cirja M, Zuehlke S, Ivashechkin P, Hollender J, Schäffer A, Corvini PFX (2007) Behavior of two differently radiolabelled 17[alpha]-ethinylestradiols continuously applied to a laboratory-scale membrane bioreactor with adapted industrial activated sludge. Water Res 41:4403–4412. doi:10.1016/j.watres.2007.06.022

    Article  PubMed  CAS  Google Scholar 

  • Clara M, Strenn B, Ausserleitner M, Kreuzinger N (2004) Comparison of the behaviour of selected micropollutants in a membrane bioreactor and a conventional wastewater treatment plant. Water Sci Technol 50:29–36

    PubMed  CAS  Google Scholar 

  • Clara M, Kreuzinger N, Strenn B, Gans O, Kroiss H (2005a) The solids retention time—a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants. Water Res 39:97–106. doi:10.1016/j.watres.2004.08.036

    Article  PubMed  CAS  Google Scholar 

  • Clara M, Strenn B, Gans O, Martinez E, Kreuzinger N, Kroiss H (2005b) Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res 39:4797–4807. doi:10.1016/j.watres.2005.09.015

    Article  PubMed  CAS  Google Scholar 

  • Correia MA (2007) Drug biotransformation. In: Katzung BG (ed) Basic and clinical pharmacology, 10th edn. McGraw-Hill Companies, Inc, New York

    Google Scholar 

  • Crane M, Watts C, Boucard T (2006) Chronic aquatic environmental risks from exposure to human pharmaceuticals. Sci Total Environ 367:23–41. doi:10.1016/j.scitotenv.2006.04.010

    Article  PubMed  CAS  Google Scholar 

  • Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107:907–938. doi:10.2307/3434573

    Article  PubMed  CAS  Google Scholar 

  • Drewes JE, Fox P, Jekel M (2001) Occurrence of iodinated X-ray contrast media in domestic effluents and their fate during indirect potable reuse. J Environ Sci Health A 36:1633–1645. doi:10.1081/ESE-100106248

    Article  CAS  Google Scholar 

  • Drewes JE, Heberer T, Reddersen K (2002) Fate of pharmaceuticals during indirect potable reuse. Water Sci Technol 46:73–80

    PubMed  CAS  Google Scholar 

  • Drillia P, Dokianakis SN, Fountoulakis MS, Kornaros M, Stamatelatou K, Lyberatos G (2005) On the occasional biodegradation of pharmaceuticals in the activated sludge process: the example of the antibiotic sulfamethoxazole. J Hazard Mater 122:259–265. doi:10.1016/j.jhazmat.2005.03.009

    Article  PubMed  CAS  Google Scholar 

  • Ericson JF (2007) An evaluation of the OECD 308 water/sediment systems for investigating the biodegradation of pharmaceuticals. Environ Sci Technol 41:5803–5811. doi:10.1021/es063043+

    Article  PubMed  CAS  Google Scholar 

  • Göbel A, McArdell CS, Joss A, Siegrist H, Giger W (2007) Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Sci Total Environ 372:361–371. doi:10.1016/j.scitotenv.2006.07.039

    Article  PubMed  CAS  Google Scholar 

  • Gómez MJ, Martínez Bueno MJ, Lacorte S, Fernández-Alba AR, Agüera A (2007) Pilot survey monitoring pharmaceuticals and related compounds in a sewage treatment plant located on the Mediterranean coast. Chemosphere 66:993–1002. doi:10.1016/j.chemosphere.2006.07.051

    Article  PubMed  CAS  Google Scholar 

  • González S, Muller J, Petrovic M, Barcelo D, Knepper T (2006) Biodegradation studies of selected priority acidic pesticides and diclofenac in different bioreactors. Environ Pollut 144:926–932. doi:10.1016/j.envpol.2006.02.021

    Article  PubMed  CAS  Google Scholar 

  • Gröning J, Held C, Garten C, Claußnitzer U, Kaschabek S, Schlömann M (2007) Transformation of diclofenac by the indigenous microflora of river sediments and identification of a major intermediate. Chemosphere 69:509–516. doi:10.1016/j.chemosphere.2007.03.037

    Article  PubMed  CAS  Google Scholar 

  • Grunheid S, Amy G, Jekel M (2005) Removal of bulk dissolved organic carbon (DOC) and trace organic compounds by bank filtration and artificial recharge. Water Res 39:3219–3228. doi:10.1016/j.watres.2005.05.030

    Article  PubMed  CAS  Google Scholar 

  • Haiß A, Kümmerer K (2006) Biodegradability of the X-ray contrast compound diatrizoic acid, identification of aerobic degradation products and effects against sewage sludge micro-organisms. Chemosphere 62:294–302. doi:10.1016/j.chemosphere.2005.05.007

    Article  PubMed  CAS  Google Scholar 

  • Heidler J, Halden RU (2007) Mass balance assessment of triclosan removal during conventional sewage treatment. Chemosphere 66:362–369. doi:10.1016/j.chemosphere.2006.04.066

    Article  PubMed  CAS  Google Scholar 

  • Heidler J, Sapkota A, Halden RU (2006) Partitioning, persistence, and accumulation in digested sludge of the topical antiseptic triclocarban during wastewater treatment. Environ Sci Technol 40:3634–3639. doi:10.1021/es052245n

    Article  PubMed  CAS  Google Scholar 

  • Hua J, An P, Winter J, Gallert C (2003) Elimination of COD, microorganisms and pharmaceuticals from sewage by trickling through sandy soil below leaking sewers. Water Res 37:4395–4404. doi:10.1016/S0043-1354(03)00334-8

    Article  PubMed  CAS  Google Scholar 

  • Jones OAH, Voulvoulis N, Lester JN (2007) The occurrence and removal of selected pharmaceutical compounds in a sewage treatment works utilising activated sludge treatment. Environ Pollut 145:738–744. doi:10.1016/j.envpol.2005.08.077

    Article  PubMed  CAS  Google Scholar 

  • Joss A, Andersen H, Ternes T, Richle PR, Siegrist H (2004) Removal of estrogens in municipal wastewater treatment under aerobic and anaerobic conditions: consequences for plant optimization. Environ Sci Technol 38:3047–3055. doi:10.1021/es0351488

    Article  PubMed  CAS  Google Scholar 

  • Junker T, Alexy R, Knacker T, Kümmerer K (2006) Biodegradability of 14C-labeled antibiotics in a modified laboratory scale sewage treatment plant at environmentally relevant concentrations. Environ Sci Technol 40:318–324. doi:10.1021/es051321j

    Article  PubMed  CAS  Google Scholar 

  • Kalsch W (1999) Biodegradation of the iodinated X-ray contrast media diatrizoate and iopromide. Sci Total Environ 225:143–153. doi:10.1016/S0048-9697(98)00340-4

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Eichhorn P, Jensen JN, Weber AS, Aga DS (2005) Removal of antibiotics in wastewater: effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process. Environ Sci Technol 39:5816–5823. doi:10.1021/es050006u

    Article  PubMed  CAS  Google Scholar 

  • Kim SD, Cho J, Kim IS, Vanderford BJ, Snyder SA (2007) Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res 41:1013–1021. doi:10.1016/j.watres.2006.06.034

    Article  PubMed  CAS  Google Scholar 

  • Klopman G, Tu MH (1997) Structure-biodegradability study and computer-automated prediction of aerobic biodegradation of chemicals. Environ Toxicol Chem 16:1829–1835. doi:10.1897/1551-5028(1997)016<1829:SBSACA>2.3.CO;2

    Article  CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211. doi:10.1021/es011055j

    Article  PubMed  CAS  Google Scholar 

  • Kosjek T, Heath E, Kompare B (2007) Removal of pharmaceutical residues in a pilot wastewater treatment plant. Anal Bioanal Chem 387:1379–1387. doi:10.1007/s00216-006-0969-1

    Article  PubMed  CAS  Google Scholar 

  • Kreuzinger N, Clara M, Strenn B, Kroiss H (2004) Relevance of the sludge retention time (SRT) as design criteria for wastewater treatment plants for the removal of endocrine disruptors and pharmaceuticals from wastewater. Water Sci Technol 50:149–156

    PubMed  CAS  Google Scholar 

  • Kümmerer K, Al-Ahmad A (1997) Biodegradability of the anti-tumour agents 5-fluorouracil, cytarabine, and gemcitabine: impact of the chemical structure and synergistic toxicity with hospital effluent. Acta Hydrochim Hydrobiol 25:166–172. doi:10.1002/aheh.19970250402

    Article  Google Scholar 

  • Kümmerer K, Steger-Hartmann T, Meyer M (1997) Biodegradability of the anti-tumor agent ifosfamide and its occurrence in hospital effluents and communal sewage. Water Res 31:2705–2710. doi:10.1016/S0043-1354(97)00121-8

    Article  Google Scholar 

  • Kupper T, Plagellat C, Brändli RC, de Alencastro LF, Grandjean D, Tarradellas J (2006) Fate and removal of polycyclic musks, UV filters and biocides during wastewater treatment. Water Res 40:2603–2612. doi:10.1016/j.watres.2006.04.012

    Article  PubMed  CAS  Google Scholar 

  • Kwon JW, Armbrust KL (2006) Laboratory persistence and fate of fluoxetine in aquatic environments. Environ Toxicol Chem 25:2561–2568. doi:10.1897/05-613R.1

    Article  PubMed  CAS  Google Scholar 

  • Layton AC, Gregory BW, Seward JR, Schultz TW, Sayler GS (2000) Mineralization of steroidal hormones by biosolids in wastewater treatment systems in Tennessee USA. Environ Sci Technol 34:3925–3931. doi:10.1021/es9914487

    Article  CAS  Google Scholar 

  • Lindqvist N, Tuhkanen T, Kronberg L (2005) Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters. Water Res 39:2219–2228. doi:10.1016/j.watres.2005.04.003

    Article  PubMed  CAS  Google Scholar 

  • Massmann G, Greskowiak J, Dunnbier U, Zuehlke S, Knappe A, Pekdeger A (2006) The impact of variable temperatures on the redox conditions and the behaviour of pharmaceutical residues during artificial recharge. J Hydrol (Amst) 328:141–156. doi:10.1016/j.jhydrol.2005.12.009

    Article  CAS  Google Scholar 

  • Matamoros V, Bayona JM (2006) Elimination of pharmaceuticals and personal care products in subsurface flow constructed wetlands. Environ Sci Technol 40:5811–5816. doi:10.1021/es0607741

    Article  PubMed  CAS  Google Scholar 

  • Matamoros V, Puigagut J, Garcia J, Bayona JM (2007) Behavior of selected priority organic pollutants in horizontal subsurface flow constructed wetlands: a preliminary screening. Chemosphere 69:1374–1380. doi:10.1016/j.chemosphere.2007.05.012

    Article  PubMed  CAS  Google Scholar 

  • Matamoros V, Caselles-Osorio A, García J, Bayona JM (2008a) Behavior of pharmaceutical products and biodegradation intermediates in horizontal subsurface flow constructed wetland. A microcosm experiment. Sci Total Environ 394:171–176. doi:10.1016/j.scitotenv.2008.01.029

    Article  PubMed  CAS  Google Scholar 

  • Matamoros V, García J, Bayona JM (2008b) Organic micropollutant removal in a full-scale surface flow constructed wetland fed with secondary effluent. Water Res 42:653–660. doi:10.1016/j.watres.2007.08.016

    Article  PubMed  CAS  Google Scholar 

  • Maurer M, Escher BI, Richle P, Schaffner C, Alder AC (2007) Elimination of β-blockers in sewage treatment plants. Water Res 41:1614–1622. doi:10.1016/j.watres.2007.01.004

    Article  PubMed  CAS  Google Scholar 

  • McAvoy DC, Schatowitz B, Jacob M, Hauk A, Eckhoff WS (2002) Measurement of triclosan in wastewater treatment systems. Environ Toxicol Chem 21:1323–1329. doi:10.1897/1551-5028(2002)021<1323:MOTIWT>2.0.CO;2

    Article  PubMed  CAS  Google Scholar 

  • Metcalf & Eddy Inc. (2003) Wastewater engineering: treatment and reuse. McGraw-Hill Companies, Inc, New York

    Google Scholar 

  • Nakada N, Tanishima T, Shinohara H, Kiri K, Takada H (2006) Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment. Water Res 40:3297–3303. doi:10.1016/j.watres.2006.06.039

    Article  PubMed  CAS  Google Scholar 

  • Oppenheimer J, Stephenson R, Burbano A (2007) Characterizing the passage of personal care products through wastewater treatment processes. Water Environ Res 79:2564–2577. doi:10.2175/106143007X184573

    Article  PubMed  CAS  Google Scholar 

  • Paxéus N (2004) Removal of selected non-steroidal anti-inflammatory drugs (NSAIDs), gemfibrozil, carbamazepine, beta-blockers, trimethoprim and triclosan in conventional wastewater treatment plants in five EU countries and their discharge to the aquatic environment. Water Sci Technol 50:253–260

    PubMed  Google Scholar 

  • Peng X, Wang Z, Kuang W, Tan J, Li K (2006) A preliminary study on the occurrence and behavior of sulfonamides, ofloxacin and chloramphenicol antimicrobials in wastewaters of two sewage treatment plants in Guangzhou, China. Sci Total Environ 371:314–322. doi:10.1016/j.scitotenv.2006.07.001

    Article  PubMed  CAS  Google Scholar 

  • Quintana JB, Weiss S, Reemtsma T (2005) Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor. Water Res 39:2654–2664. doi:10.1016/j.watres.2005.04.068

    Article  PubMed  CAS  Google Scholar 

  • Radjenovic J, Petrovic M, Barceló D (2007) Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor. Anal Bioanal Chem 387:1365–1377. doi:10.1007/s00216-006-0883-6

    Article  PubMed  CAS  Google Scholar 

  • Redshaw CH, Cooke MP, Talbot HM, McGrath S, Rowland SJ (2008) Low biodegradability of fluoxetine HCl, diazepam and their human metabolites in sewage sludge-amended soil. J Soils Sediments 8:217–230. doi:10.1007/s11368-008-0024-2

    Article  CAS  Google Scholar 

  • Rodríguez I, Quintana JB, Carpinteiro J, Carro AM, Lorenzo RA, Cela R (2003) Determination of acidic drugs in sewage water by gas chromatography-mass spectrometry as tert.-butyldimethylsilyl derivatives. J Chromatogr A 985:265–274. doi:10.1016/S0021-9673(02)01528-5

    Article  PubMed  Google Scholar 

  • Rorije E, Loonen H, Muller M, Klopman G, Peijnenburg W (1999) Evaluation and application of models for the prediction of ready biodegradability in the MITI-I test. Chemosphere 38:1409–1417. doi:10.1016/S0045-6535(98)00543-8

    Article  PubMed  CAS  Google Scholar 

  • Sharvelle S, Skvarenina E, Banks MK (2008) Biodegradation of disodium cocoamphodiacetate by a wastewater microbial consortium. Water Environ Res 80:276–281. doi:10.2175/106143008X268489

    Article  PubMed  CAS  Google Scholar 

  • Simonich SL, Federle TW, Eckhoff WS, Rottiers A, Webb S, Sabaliunas D, De Wolf W (2002) Removal of fragrance materials during US and European wastewater treatment. Environ Sci Technol 36:2839–2847. doi:10.1021/es025503e

    Article  PubMed  CAS  Google Scholar 

  • Smook TM, Zho H, Zytner RG (2008) Removal of ibuprofen from wastewater: comparing biodegradation in conventional, membrane bioreactor, and biological nutrient removal treatment systems. Water Sci Technol 57:1–8. doi:10.2166/wst.2008.658

    Article  PubMed  CAS  Google Scholar 

  • Snyder SA, Leising J, Westerhoff P, Yoon Y, Mash H, Vanderford B (2004) Biological and physical attenuation of endocrine pisruptors and pharmaceuticals: Implications for water reuse. Ground Water Monit Remediat 24:108–118. doi:10.1111/j.1745-6592.2004.tb00719.x

    Article  CAS  Google Scholar 

  • Stasinakis AS, Petalas AV, Mamais D, Thomaidis NS, Gatidou G, Lekkas TD (2007) Investigation of triclosan fate and toxicity in continuous-flow activated sludge systems. Chemosphere 68:375–381. doi:10.1016/j.chemosphere.2007.01.047

    Article  PubMed  CAS  Google Scholar 

  • Stumpf M, Ternes TA, Wilken RD, Rodrigues SV, Baumann W (1999) Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil. Sci Total Environ 225:135–141. doi:10.1016/S0048-9697(98)00339-8

    Article  PubMed  Google Scholar 

  • Suárez S, Ramill M, Omil F, Lema JM (2005) Removal of pharmaceutically active compounds in nitrifying-denitrifying plants. Water Sci Technol 52:9–14

    PubMed  Google Scholar 

  • Tauxe-Wuersch A, De Alencastro LF, Grandjean D, Tarradellas J (2005) Occurrence of several acidic drugs in sewage treatment plants in Switzerland and risk assessment. Water Res 39:1761–1772. doi:10.1016/j.watres.2005.03.003

    Article  PubMed  CAS  Google Scholar 

  • Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32:3245–3260. doi:10.1016/S0043-1354(98)00099-2

    Article  CAS  Google Scholar 

  • Ternes TA, Hirsch R (2000) Occurrence and behavior of X-ray contrast media in sewage facilities and the aquatic environment. Environ Sci Technol 34:2741–2748. doi:10.1021/es991118m

    Article  CAS  Google Scholar 

  • Ternes TA, Joss A (2006) Human pharmaceuticals, hormones and fragrances. IWA Publishing, New York

    Google Scholar 

  • Ternes TA, Kreckel P, Mueller J (1999a) Behaviour and occurrence of estrogens in municipal sewage treatment plants–II. Aerobic batch experiments with activated sludge. Sci Total Environ 225:91–99. doi:10.1016/S0048-9697(98)00335-0

    Article  PubMed  CAS  Google Scholar 

  • Ternes TA, Stumpf M, Mueller J, Haberer K, Wilken RD, Servos M (1999b) Behavior and occurrence of estrogens in municipal sewage treatment plants—I. Investigations in Germany, Canada and Brazil. Sci Total Environ 225:81–90. doi:10.1016/S0048-9697(98)00334-9

    Article  PubMed  CAS  Google Scholar 

  • Ternes TA, Bonerz M, Herrmann N, Teiser B, Andersen HR (2007) Irrigation of treated wastewater in Braunschweig, Germany: an option to remove pharmaceuticals and musk fragrances. Chemosphere 66:894–904. doi:10.1016/j.chemosphere.2006.06.035

    Article  PubMed  CAS  Google Scholar 

  • Thompson A, Griffin P, Stuetz R, Cartmell E (2005) The fate and removal of triclosan during wastewater treatment. Water Environ Res 77:63–67. doi:10.2175/106143005X41636

    Article  PubMed  CAS  Google Scholar 

  • Tixier C, Singer HP, Oellers S, Muller SR (2003) Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environ Sci Technol 37:1061–1068. doi:10.1021/es025834r

    Article  PubMed  CAS  Google Scholar 

  • Trautwein C, Kümmerer K, Metzger JW (2008) Aerobic biodegradability of the calcium channel antagonist verapamil and identification of a microbial dead-end transformation product studied by LC-MS/MS. Chemosphere 72:442–450. doi:10.1016/j.chemosphere.2008.02.022

    Article  PubMed  CAS  Google Scholar 

  • Tunkel J, Howard PH, Boethling RS, Stiteler W, Loonen H (2000) Predicting ready biodegradability in the Japanese Ministry of International Trade and Industry test. Environ Toxicol Chem 19:2478–2485. doi:10.1897/1551-5028(2000)019<2478:PRBITJ>2.3.CO;2

    Article  CAS  Google Scholar 

  • Vader JS, van Ginkel CG, Sperling F, de Jong J, de Boer W, de Graaf JS, van der Most M, Stokman PGW (2000) Degradation of ethinyl estradiol by nitrifying activated sludge. Chemosphere 41:1239–1243. doi:10.1016/S0045-6535(99)00556-1

    Article  PubMed  CAS  Google Scholar 

  • Vasskog T, Berger U, Samuelsen PJ, Kallenborn R, Jensen E (2006) Selective serotonin reuptake inhibitors in sewage influents and effluents from Tromso, Norway. J Chromatogr A 1115:187–195. doi:10.1016/j.chroma.2006.02.091

    Article  PubMed  CAS  Google Scholar 

  • Vieno NM, Tuhkanen T, Kronberg L (2005) Seasonal variation in the occurrence of pharmaceuticals in effluents from a sewage treatment plant and in the recipient water. Environ Sci Technol 39:8220–8226. doi:10.1021/es051124k

    Article  PubMed  CAS  Google Scholar 

  • Vieno N, Tuhkanen T, Kronberg L (2007) Elimination of pharmaceuticals in sewage treatment plants in Finland. Water Res 41:1001–1012. doi:10.1016/j.watres.2006.12.017

    Article  PubMed  CAS  Google Scholar 

  • Waltman EL, Venables BJ, Waller WZ (2006) Triclosan in a North Texas wastewater treatment plant and the influent and effluent of an experimental constructed wetland. Environ Toxicol Chem 25:367–372. doi:10.1897/05-112R.1

    Article  PubMed  CAS  Google Scholar 

  • Winkler M, Lawrence JR, Neu TR (2001) Selective degradation of ibuprofen and clofibric acid in two model river biofilm systems. Water Res 35:3197–3205. doi:10.1016/S0043-1354(01)00026-4

    Article  PubMed  CAS  Google Scholar 

  • Xu WH, Zhang G, Li XD, Zou SC, Li P, Hu ZH, Li J (2007) Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China. Water Res 41:4526–4534. doi:10.1016/j.watres.2007.06.023

    Article  PubMed  CAS  Google Scholar 

  • Ying GG, Yu XY, Kookana RS (2007) Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling. Environ Pollut 150:300–305. doi:10.1016/j.envpol.2007.02.013

    Article  PubMed  CAS  Google Scholar 

  • Yu JT, Bouwer EJ, Coelhan M (2006) Occurrence and biodegradability studies of selected pharmaceuticals and personal care products in sewage effluent. Agric Water Manag 86:72–80. doi:10.1016/j.agwat.2006.06.015

    Article  Google Scholar 

  • Zhou P, Su CY, Li BW, Yi Q (2006) Treatment of high-strength pharmaceutical wastewater and removal of antibiotics in anaerobic and aerobic biological treatment processes. J Environ Eng 132:129–136. doi:10.1061/(ASCE)0733-9372(2006)132:1(129)

    Article  CAS  Google Scholar 

  • Zwiener C, Frimmel FH (2003) Short-term tests with a pilot sewage plant and biofilm reactors for the biological degradation of the pharmaceutical compounds clofibric acid, ibuprofen, and diclofenac. Sci Total Environ 309:201–211. doi:10.1016/S0048-9697(03)00002-0

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work in this publication was supported in part by two EPA fellowships, STAR Research Assistance Agreement Numbers FP-916857 (KO) and F6A20029 (JY), awarded by the U.S. Environmental Protection Agency, by an ARCS fellowship (JY) and by the National Science Foundation under Grant No. 0606880. It has not been formally reviewed by the EPA. The views expressed in this document are solely those of the authors, and the EPA does not endorse any products or commercial services mentioned in this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward J. Bouwer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onesios, K.M., Yu, J.T. & Bouwer, E.J. Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: a review. Biodegradation 20, 441–466 (2009). https://doi.org/10.1007/s10532-008-9237-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-008-9237-8

Keywords

Navigation