Skip to main content
Log in

Biodegradation of petroleum sludge and petroleum polluted soil by a bacterial consortium: a laboratory study

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

This article presents a study of the efficiency and degradation pattern of samples of petroleum sludge and polluted sandy soil from an oil refinery. A bacterial consortium, consisting of strains from the genera Pseudomonas, Achromobacter, Bacillus and Micromonospora, was isolated from a petroleum sludge sample and characterized. The addition of nitrogen and phosphorus nutrients and a chemical surfactant to both the samples and bioaugmentation to the soil sample were applied under laboratory conditions. The extent of biodegradation was monitored by the gravimetric method and analysis of the residual oil by gas chromatography. Over a 12-week experiment, the achieved degree of TPH (total petroleum hydrocarbon) degradation amounted to 82–88% in the petroleum sludge and 86–91% in the polluted soil. Gas chromatography–mass spectrometry was utilized to determine the biodegradability and degradation rates of n-alkanes, isoprenoids, steranes, diasteranes and terpanes. Complete degradation of the n-alkanes and isoprenoids fractions occurred in both the samples. In addition, the intensities of the peaks corresponding to tricyclic terpenes and homohopanes were decreased, while significant changes were also observed in the distribution of diasteranes and steranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvarez PJJ, Illman WA (2006) Bioremediation and natural attenuation: process fundamentals and mathematical models. Wiley, Hoboken

    Google Scholar 

  • Arafa MA (2003) Biodegradation of some aromatic hydrocarbons (BTEXs) by a bacterial consortium isolated from polluted site in Saudi Arabia. Pak J Biol Sci 6:1482–1486

    Article  Google Scholar 

  • Arvanitis N, Katsifas E, Chalkou KI, Meintanis C, Karagouni AD (2008) A refinery sludge deposition site: presence of nahH and alkJ genes and crude oil biodegradation ability of bacterial isolates. Biotechnol Lett 30:2105–2110

    Article  PubMed  CAS  Google Scholar 

  • Bautista LF, Sanz R, Molina MC, Gonzales N, Sanchez D (2009) Effect of different non-ionic surfactants on the biodegradation of PAHs by diverse aerobic bacteria. Int Biodeterior Biodegrad 63:913–922

    Article  Google Scholar 

  • Cameotra SS, Singh P (2008) Bioremediation of oil sludge using crude biosurfactants. Int Biodeterior Biodegrad 62:274–280

    Article  CAS  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int. doi:10.4061/2011/941810

  • DIN-EN 14345 (2004) Characterization of waste—determination of hydrocarbon content by gravimetry

  • EPA SW-846 method 3051 (1995) Microwave assisted acid digestion of sediments, sludges, soil and oils. In: Test methods for evaluating solid waste, 3rd edn, 3rd Update, US Environmental Protection Agency, Washington

  • Fuentes MS, Benimeli CS, Cuozzo SA, Amoroso MJ (2010) Isolation of pesticide-degrading actinomycetes from a contaminated site: bacterial growth, removal and dechlorination of organochlorine pesticides. Int Biodeterior Biodegrad 64:434–441

    Article  CAS  Google Scholar 

  • Gentry JT, Rensing C, Pepper IL (2004) New approaches for bioaugmentation as a remediation technology. Crit Rev Environ Sci Technol 34:447–494

    Article  CAS  Google Scholar 

  • Ghazali FM, Rahman RNZA, Salleh AB, Basri M (2004) Biodegradation of hydrocarbons in soil by microbial consortium. Int Biodeterior Biodegrad 54:61–67

    Article  CAS  Google Scholar 

  • Haack SK, Garchow H, Odelson DA, Forney LJ J, Klug MJ (1994) Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities. Appl Environ Microbiol 60:2483–2493

    PubMed  CAS  Google Scholar 

  • Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Wards JM, Shrempf H (1985) Genetic manipulation of Streptomyces: a laboratory manual, 1st edn. John Innes Foundation, Norwich

    Google Scholar 

  • Ijah UJJ, Antai SP (2003) Removal of Nigerian light crude oil in soil over a 12-month period. Int Biodeterior Biodegrad 51:93–99

    Article  CAS  Google Scholar 

  • Ito H, Hosokawa R, Morikawa M, Okuyama H (2008) A turbine oil-degrading bacterial consortium from soils of oil fields and its characteristics. Int Biodeterior Biodegrad 61:223–232

    Article  CAS  Google Scholar 

  • Kausar H, Sariah M, Mohd Saud H, Zahangir Alam M, Razi Ismail M (2011) Isolation and screening of potential actinobacteria for rapid composting of rice straw. Biodegradation 22:367–375

    Article  PubMed  CAS  Google Scholar 

  • Koma D, Sakashita Y, Kubota K, Fujii Y, Hasumi F, Chung SY, Kubo M (2003) Degradation of car engine oil by Rhodococcus sp. NDKK48 and Gordonia sp. NDKY76A. Biosci Biotechnol Biochem 67:1590–1593

    Article  PubMed  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow MM (eds) Nucleic acid techniques in bacterial systematic. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Liu JS, Xie XH, Xiao SM, Wang XM, Zhao WJ, Tian ZL (2007) Isolation of Leptospirillum ferriphilum by single-layered solid medium. J Cent South Univ Technol 4:467–473

    Article  Google Scholar 

  • Löser C, Seidel H, Zehnsdorf A, Stottmeister U (1998) Microbial degradation of hydrocarbons in soil during aerobic/anaerobic changes and under purely aerobic conditions. Appl Microbiol Biotechnol 49:631–636

    Article  Google Scholar 

  • Mishra S, Jyot J, Kuhad RC, Lal B (2001) Evaluation of inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil. Appl Environ Microbiol 67:1675–1681

    Article  PubMed  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Surfactant-enhanced remediation of contaminated soil: a review. Eng Geol 60:371–380

    Article  Google Scholar 

  • Namio K, Haruki M, Takano S, Morikawa M, Kanaya S (2005) Isolation and characterization of Rhodococcus sp. strains TMP2 and T12 that degrade 2,6,10,14-tetramethylpentane (pristane) at moderately low temperatures. J Biotechnol 115:129–136

    Article  Google Scholar 

  • Nieto JJ, Fernandez-Castillo R, Marquez MC, Ventosa A, Quesada E, Ruiz-Berraquero F (1989) Survey of metal tolerance in moderately halophilic eubacteria. Appl Environ Microbiol 55:2385–2390

    PubMed  CAS  Google Scholar 

  • Perry JJ (1984) Microbial metabolism of cyclic alkanes. In: Atlas RM (ed) Petroleum microbiology. MacMillan Publishing Company, New York, pp 61–98

    Google Scholar 

  • Peters KE, Walters CC, Moldovan JM (2005) The biomarker guide. Cambridge University Press, Cambridge

    Google Scholar 

  • Rahman KSM, Rahman TJ, Kourkoutas Y, Petsas I, Marchant R, Banat IM (2003) Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresour Technol 90:159–168

    Article  PubMed  CAS  Google Scholar 

  • Rump HH (1999) Laboratory manual for the examination of water, waste water and soil. 3rd edn, Wiley-VCH Verlag GmbH, Weinheim, pp 144–190

  • Thompson IP, van der Gast CJ, Ciric L, Singer AC (2005) Bioaugmentation for bioremediation: the challenge of strain selection. Environ Microbiol 7:909–915

    Article  PubMed  CAS  Google Scholar 

  • Vasudevan N, Rajaram P (2001) Bioremediation of oil sludge-contaminated soil. Environ Int 26:409–411

    Article  PubMed  CAS  Google Scholar 

  • Verma S, Bhargava R, Pruthi V (2006) Oily sludge degradation by bacteria from Ankleshwar, India. Int Biodeterior Biodegrad 57:207–213

    Article  CAS  Google Scholar 

  • Walker JD, Colwell RR, Petrakis L (1975) Microbial petroleum degradation: application of computerized mass spectrometry. Can J Microbiol 21:1760–1767

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Fingas MF (2003) Development of oil hydrocarbon fingerprinting and identification techniques. Mar Pollut Bull 47:423–452

    Article  PubMed  CAS  Google Scholar 

  • Ward O, Singh A, Van Hamme J (2003) Accelerated biodegradation of petroleum hydrocarbon waste. J Ind Microbiol Biotechnol 30:260–270

    Article  PubMed  CAS  Google Scholar 

  • Wentzel A, Ellingsen TE, Kotlar HK, Zotchev SB, Throne-Holst M (2007) Bacterial metabolism of long chain n-alkanes. Appl Microbiol Biotechnol 76:1209–1221

    Article  PubMed  CAS  Google Scholar 

  • Wongsa P, Tanaka M, Ueno A, Hasanuzzaman M, Yumoto I, Okuyama H (2004) Isolation and characterization of novel strains of Pseudomonas aeruginosa and Serratia marcescens possessing high efficiency to degrade gasoline, kerosene, diesel oil, and lubricating oil. Curr Microbiol 49:415–422

    Article  PubMed  CAS  Google Scholar 

  • Zvyagintseva IS, Suroviseva EG, Polglazova MN, Ivoilov VS, Belyaev SS (2001) Degradation of machine oil by nocardioform bacteria. Microbiology 70:270–276

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministry of Science and Technological Development of the Republic of Serbia (III 43004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Gojgic-Cvijovic.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TXT 7 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gojgic-Cvijovic, G.D., Milic, J.S., Solevic, T.M. et al. Biodegradation of petroleum sludge and petroleum polluted soil by a bacterial consortium: a laboratory study. Biodegradation 23, 1–14 (2012). https://doi.org/10.1007/s10532-011-9481-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-011-9481-1

Keywords

Navigation