Skip to main content
Log in

Sulfate-reducing anaerobic ammonium oxidation as a potential treatment method for high nitrogen-content wastewater

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

After sulfate-reducing ammonium oxidation (SRAO) was first assumed in 2001, several works have been published describing this process in laboratory-scale bioreactors or occurring in the nature. In this paper, the SRAO process was performed using reject water as a substrate for microorganisms and a source of NH4 +, with SO4 2− being added as an electron acceptor. At a moderate temperature of 20°C in a moving bed biofilm reactor (MBBR) sulfate reduction along with ammonium oxidation were established. In an upflow anaerobic sludge blanket reactor (UASBR) the SRAO process took place at 36°C. Average volumetric TN removal rates of 0.03 kg-N/m³/day in the MBBR and 0.04 kg-N/m³/day in the UASBR were achieved, with long-term moderate average removal efficiencies, respectively. Uncultured bacteria clone P4 and uncultured planctomycete clone Amx-PAn30 were detected from the biofilm of the MBBR, from sludge of the UASBR uncultured Verrucomicrobiales bacterium clone De2102 and Uncultured bacterium clone ATB-KS-1929 were found also. The stoichiometrical ratio of NH4 + removal was significantly higher than could be expected from the extent of SO4 2− reduction. This phenomenon can primarily be attributed to complex interactions between nitrogen and sulfur compounds and organic matter present in the wastewater. The high NH4 + removal ratio can be attributed to sulfur-utilizing denitrification/denitritation providing the evidence that SRAO is occurring independently and is not a result of sulfate reduction and anammox. HCO3 concentrations exceeding 1,000 mg/l were found to have an inhibiting effect on the SRAO process. Small amounts of hydrazine were naturally present in the reaction medium, indicating occurrence of the anammox process. Injections of anammox intermediates, hydrazine and hydroxylamine, had a positive effect on SRAO process performance, particularly in the case of the UASBR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amend JP, Rogers KL, Shock EL, Gurrieri S, Inguaggiato S (2003) Energetics of chemolithoautotrophy in the hydrothermal system of Vulcano Island, southern Italy. Geobiology 1:37–58

    Article  CAS  Google Scholar 

  • APHA (American Public Health Association) (1985) Standard methods for the examination of water and wastewater, 16th edn. APHA, Washington DC

    Google Scholar 

  • Aranda-Tamaura C, Estrada-Alvarado MI, Texier A-C, Cuervo F, Gómez J, Cervantes FJ (2007) Effects of different quinoid redox mediators on the removal of sulfide and nitrate via denitrification. Chemosphere 69:1722–1727

    Article  PubMed  CAS  Google Scholar 

  • Bettazzi E, Caffaz S, Vannini C, Lubello C (2010) Nitrite inhibition and intermediates effects on anammox bacteria: a batch-scale experimental study. Process Biochem 45:573–580

    Article  CAS  Google Scholar 

  • Cervantes FJ, van der Velde S, Lettinga G, Field JA (2000) Quinones as terminal electron acceptors for anaerobic microbial oxidation of phenolic compounds. Biodegradation 11(5):313–321

    Article  PubMed  CAS  Google Scholar 

  • Chamchoi N, Nitisoravut S, Schmidt JE (2008) Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification. Bioresour Technol 99:3331–3336

    Article  PubMed  CAS  Google Scholar 

  • Clément J-C, Shrestha J, Ehrenfeld JG, Jaffé PR (2005) Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil Biol Biochem 37:2323–2328

    Article  Google Scholar 

  • Dexiang L, Xiaoming L, Qi Y, Guangming Z, Liang G, Xiu Y (2008) Effect of inorganic carbon on anaerobic ammonium oxidation enriched in sequencing batch reactor. J Environ Sci 20:940–944

    Article  Google Scholar 

  • Dionisi HM, Layton AC, Harms G, Gregory IR, Robinson KG, Sayler GS (2002) Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrospira spp. from full-scale wastewater treatment plants by competitive PCR. Appl Environ Microbiol 68:245–253

    Article  PubMed  CAS  Google Scholar 

  • Fdz-Polanco F, Fdz-Polanco M, Fernández N, Urueña MA, Garciá PA, Villaverde S (2001) Combining the biological nitrogen and sulfur cycles in anaerobic conditions. Water Sci Technol 44(8):77–84

    PubMed  CAS  Google Scholar 

  • Frear DS, Burrell RC (1955) Spectrophotometric method for determining hydroxylamine reductase activity in higher plants. Anal Chem 27:1664

    Article  CAS  Google Scholar 

  • George M, Nagaraja KS, Balasubramanian N (2008) Spectrophotometric determination of hydrazine. Talanta 75(1):27–31

    Article  PubMed  CAS  Google Scholar 

  • Güven D, Dapena A, Kartal B, Schmid MC, Maas B, van de Pas-Schoonen K, Sozen S, Mendez R, Op den Camp HJM, Jetten MSM, Strous M, Schmidt I (2005) Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria. Appl Environ Microbiol 71(2):1066–1071

    Article  PubMed  Google Scholar 

  • Ibrahim MBM, Moursy AS, Bedair AH, Radwan EK (2008) Comparison of DAX-8 and DEAE for isolation of humic substances from surface water. J Environ Sci Tech 1:90–96

    Article  CAS  Google Scholar 

  • Javanaud C, Michotey V, Guasco S, Garcia N, Anschutz P, Canton M, Bonin P (2011) Anaerobic ammonium oxidation mediated by Mn-oxides: from sediment to strain level. Res Microbiol. doi:10.1016/j.resmic.2011.01.011

  • Jetten MSM, van Niftrik L, Strous M, Kartal B, Keltjens JT, Op den Camp HJM (2009) Biochemistry and molecular biology of anammox bacteria. Crit Rev Biochem Mol Biol 44:65–84

    PubMed  CAS  Google Scholar 

  • Jing C, JianXiang J, Ping Z (2010) Isolation and identification of bacteria responsible for simultaneous anaerobic ammonium and sulfate removal. Sci China Chem 53(3):645–650

    Article  Google Scholar 

  • Kartal B, Rattray J, van Niftrik LA, van de Vossenberg J, Schmid MC, Webb RI, Schouten S, Fuerst JA, Sinninghe Damsté J, Jetten MSM, Strous M (2007) Candidatus ‘‘Anammoxoglobus propionicus’’ a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol 30:39–49

    Article  PubMed  CAS  Google Scholar 

  • Koplimaa M, Menert A, Blonskaja V, Kurissoo T, Zub S, Saareleht M, Vaarmets E, Menert T (2010) Liquid and gas chromatographic studies of the anaerobic degradation of baker’s yeast wastewater. Procedia Chem 2(S1):120–129

    Article  CAS  Google Scholar 

  • Koskinen PE, Kaksonen AH, Puhakka JA (2006) The relationship between instability of H2 production and compositions of bacterial communities within a dark fermentation fluidized-bed bioreactor. Biotechnol Bioeng 97:742–758

    Article  Google Scholar 

  • Lane DJ (1991) 16/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics. John Wiley and Sons, Chichester, pp 177–204

  • Lei Z, Ping Z, YuHui H, RenCun J (2009) Performance of sulfate-dependent anaerobic ammonium oxidation. Sci China Ser B Chem 52(1):86–92

    Article  Google Scholar 

  • Li W, Zhao Q-L, Liu H (2009) Sulfide removal by simultaneous autotrophic and heterotrophic desulfurization–denitrification process. J Hazard Mater 162(2–3):848–853

    Article  PubMed  CAS  Google Scholar 

  • Liang Z, Liu J-X, Li J (2009) Decomposition and mineralization of aquatic humic substances (AHS) in treating landfill leachate using the Anammox process. Chemosphere 74:1315–1320

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Yang F, Gong Z, Meng F, Chen H, Xue Y, Furukawa K (2008) Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal. Bioresour Technol 99:6817–6825

    Article  PubMed  CAS  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial population by denaturing gradient gel electrophoresis analysis of polymerase chain reaction- amplified genes coding for 16rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  • Muyzer G, Hottenträger S, Teske A, Waver C (1996) Denaturing gradient gel electrophoresis of PCR amplified 16S rDNA—a new molecular approach to analyze the genetic diversity of mixed microbial communities. In: Akermanns AD, van Elsas JD, de Brujin FJ (eds) Molecular microbial ecology manual. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Neef A, Amann RI, Schlesner H, Schleifer KH (1998) Monitoring a widespread bacterial group: in situ detection of planctomycetes with 16S rRNA-targeted probes. Microbiology UK 144:3257–3266

    Google Scholar 

  • Qiao S, Kawakubo Y, Cheng Y, Nishiyama T, Fujii T, Furukawa K (2009) Identification of bacteria coexisting with anammox bacteria in an upflow column type reactor. Biodegradation 20:117–124

    Article  PubMed  CAS  Google Scholar 

  • Sabumon PC (2007) Anaerobic ammonia removal in presence of organic matter: a novel route. J Hazard Mater 149:49–59

    Article  PubMed  CAS  Google Scholar 

  • Sabumon PC (2008) Development of a novel process for anoxic ammonia removal with sulfidogenesis. Process Biochem 43:984–991

    Article  CAS  Google Scholar 

  • Sabumon PC (2009) Effect of potential electron acceptors on anoxic ammonia oxidation in the presence of organic carbon. J Hazard Mater 172:280–288

    Article  PubMed  CAS  Google Scholar 

  • Sąnchez-Melsió A, Cįliz J, Balaguer MD, Colprim J, Vila X (2009) Development of batch-culture enrichment coupled to molecular detection for screening of natural and man-made environments in search of anammox bacteria for N-removal bioreactors systems. Chemosphere 75:169–179

    Article  PubMed  Google Scholar 

  • Sawayama S (2006) Possibility of anoxic ferric ammonium oxidation. J Biosci Bioeng 101(1):70–72

    Article  PubMed  CAS  Google Scholar 

  • Schrum HN, Spivack AJ, Kastner M, D’Hondt S (2009) Sulfate-reducing ammonium oxidation: a thermodynamically feasible metabolic pathway in subseafloor sediment. Geology 37(10):939–942

    Article  CAS  Google Scholar 

  • Strous M, Kuenen JG, Jetten MSM (1999) Key physiology of anaerobic ammonium oxidation. Appl Environ Microbiol 65:3248–3250

    PubMed  CAS  Google Scholar 

  • Strous M, Kuenen JG, Fuerst JA, Wagner M, Jetten MSM (2002) The anammox case—a new experimental manifesto for microbiological eco-physiology. Antonie van Leeuwenhoek 81:693–702

    Article  PubMed  CAS  Google Scholar 

  • Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor MW, Horn M, Daims H, Bartol-Mavel D, Wincker P, Barbe V, Fonknechten N, Vallenet D, Segurens B, Schenowitz-Truong C, Médigue C, Collingro A, Snel B, Dutilh BE, Op den Camp HJM, van der Drift C, Cirpus I, van de Pas-Schoonen KT, Harhangi HR, van Niftrik L, Schmid M, Keltjens J, van de Vossenberg J, Kartal B, Meier H, Frishman D, Huynen MA, Mewes H-W, Weissenbach J, Jetten MSM, Wagner M, Le Paslier D (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440:790–794

    Article  PubMed  Google Scholar 

  • Van der Star WRL, van de Graaf MJ, Kartal B, Picioreanu C, Jetten MSM, van Loosdrecht MCM (2008) Response of anaerobic ammonium-oxidizing bacteria to hydroxylamine. Appl Environ Microbiol 74(14):4417–4426

    Google Scholar 

  • Villaverde S (2004) Recent developments on biological nutrient removal processes for wastewater treatment. Rev Environ Sci Biotechnol 3:171–183

    Article  CAS  Google Scholar 

  • Yang Z, Zhou S, Sun Y (2009) Start-up of simultaneous removal of ammonium and sulfate from an anaerobic ammonium oxidation (anammox) process in an anaerobic up-flow bioreactor. J Hazard Mater 169:113–118

    Article  PubMed  CAS  Google Scholar 

  • Zekker I, Rikmann E, Tenno T, Lemmiksoo V, Menert A, Loorits L, Kahu K, Tomingas M, Tenno T. Anammox enrichment from reject water on blank biofilm carriers and carriers containing nitrifying biomass—operation of two moving bed biofilm reactors (MBBR) (submitted to Biodegradation)

  • Zekker I, Rikmann E, Tenno T, Menert A, Lemmiksoo V, Saluste A, Tenno T (2011) Modification of nitrifying biofilm into nitritating one by combination of increased free ammonia concentrations, lowered HRT and dissolved oxygen concentration. J Environ Sci 23(7):1113–1121

    Article  CAS  Google Scholar 

  • Zhao Q-l, Li W, You S-J (2006) Simultaneous removal of ammonium-nitrogen and sulfate from wastewaters with an anaerobic attached-growth bioreactor. Water Sci Technol 54(8):27–35

    Article  PubMed  CAS  Google Scholar 

  • Zub S, Kurissoo T, Menert A, Blonskaja V (2008) Combined biological treatment of high-sulfate wastewater from yeast production. Water Environ J 22(4):274–286

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the Estonian target-financed research project ‘‘Processes in macro- and microheterogeneous and nanoscale systems and related technological applications” (SF0180135s08) and by the Estonian Environmental Investment Center program “Treatment of nitrogen-rich wastewaters (SLOTI08262)”. Anne Paaver is acknowledged for the analyses of water samples. Alvo Aabloo is acknowledged for his contribution of Scanning Electron Microscopy technique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ergo Rikmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rikmann, E., Zekker, I., Tomingas, M. et al. Sulfate-reducing anaerobic ammonium oxidation as a potential treatment method for high nitrogen-content wastewater. Biodegradation 23, 509–524 (2012). https://doi.org/10.1007/s10532-011-9529-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-011-9529-2

Keywords

Navigation