Skip to main content
Log in

Regional Assessment of N Saturation using Foliar and Root \(\varvec {\delta}^{\bf 15}{\bf N}\)

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

N saturation induced by atmospheric N deposition can have serious consequences for forest health in many regions. In order to evaluate whether foliar \(\delta^{15}\hbox{N}\) may be a robust, regional-scale measure of the onset of N saturation in forest ecosystems, we assembled a large dataset on atmospheric N deposition, foliar and root \(\delta^{15}\hbox{N}\) and N concentration, soil C:N, mineralization and nitrification. The dataset included sites in northeastern North America, Colorado, Alaska, southern Chile and Europe. Local drivers of N cycling (net nitrification and mineralization, and forest floor and soil C:N) were more closely coupled with foliar \(\delta^{15}\hbox{N}\) than the regional driver of N deposition. Foliar \(\delta^{15}\hbox{N}\) increased non-linearly with nitrification:mineralization ratio and decreased with forest floor C:N. Foliar \(\delta^{15}\hbox{N}\) was more strongly related to nitrification rates than was foliar N concentration, but concentration was more strongly correlated with N deposition. Root \(\delta^{15}\hbox{N}\) was more tightly coupled to forest floor properties than was foliar \(\delta^{15}\hbox{N}\). We observed a pattern of decreasing foliar \(\delta^{15}\hbox{N}\) values across the following species: American beech>yellow birch>sugar maple. Other factors that affected foliar \(\delta^{15}\hbox{N}\) included species composition and climate. Relationships between foliar \(\delta^{15}\hbox{N}\) and soil variables were stronger when analyzed on a species by species basis than when many species were lumped. European sites showed distinct patterns of lower foliar \(\delta^{15}\hbox{N}\), due to the importance of ammonium deposition in this region. Our results suggest that examining \(\delta^{15}\hbox{N}\) values of foliage may improve understanding of how forests respond to the cascading effects of N deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aber J.D., Goodale C.L., Ollinger S.V., Smith M.-L., Magill A.H., Martin M.E., Hallett R.A., Stoddard J.L. (2003). Is nitrogen deposition altering the nitrogen status of northeastern forests?. Bioscience 53(4):375–389

    Article  Google Scholar 

  • Aber J., McDowell W., Nadelhoffer K., Magill A., Berntson G., Kamakea M., McNulty S., Currie W., Rustad L., Fernandez I. (1998). Nitrogen saturation in temperate forest ecosystems. Bioscience 48:921–934

    Article  Google Scholar 

  • Aber J.D., Nadelhoffer K.J., Steudler P., Melillo J.M. (1989). Nitrogen saturation in northern forest ecosystems. BioScience 39:378–386

    Article  Google Scholar 

  • Adams M.B., Angradi T.R., Kochenderfer J.N. (1997). Stream water and soil solution responses to 5 years of nitrogen and sulfur additions at Fernow Experimental Forest, West Virginia. Forest Ecol. Manag. 95:79–91

    Article  Google Scholar 

  • Amundson R., Aystin A.T., Schuur E.A.G., Yoo K., Matzek V., Kendall C., Uebersax A., Brenner D. and Baisden W.T. 2003. Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochem. Cycles 17(1), 1031, doi10.1029/2002GB001903, 2003

    Google Scholar 

  • Andersen B.R. (2000). Data – site Gribskov. CD-ROM-Database. In: Schulze E.-D. (eds). Carbon and Nitrogen Cycling in European Forest Ecosystems. Ecological Studies 142. Springer, Berlin

    Google Scholar 

  • Austin A.T., Sala O.E. (1999). Foliar d15N is negatively correlated with rainfall along with the IGBP transect in Australia. Aust. J. Plant. Physiol. 26:293–295

    Article  Google Scholar 

  • Austin A.T., Vitousek P.M. (1998). Nutrient dynamics on a precipitation gradient in Hawai’i. Oecologia 113:519–529

    Article  Google Scholar 

  • Bailey S.W., Driscoll C.T., Hornbeck J.W. (1995). Acid-base chemistry and aluminum transport in an acidic watershed and pond in New Hampshire. Biogeochemistry 28:69–91

    Article  Google Scholar 

  • Bauer G.A., Gebauer G., Harrison A.F., Högberg P., Högbom L., Schinkel H., Taylor A.F.S., Novak M., Buzek F., Harkness D., Persson T., Schulze E.-D. (2000). Biotic and abiotic controls over ecosystem cycling of stable natural nitrogen, carbon and sulphur isotopes. In: Schulze E.-D. (eds). Carbon and Nitrogen Cycling in European Forest Ecosystems. Springer-Verlag, Berlin, pp. 189–214

    Google Scholar 

  • Bauer G.A., Persson H., Persson T., Mund M., Hein M., Kummetz E., Matteucci G., Van Oene H., Scarascia – Mugnozza G., Schulze E.-D. (2000b). Linking plant nutrition and ecosytem processes. In: Schulze E.-D. (eds). Carbon and Nitrogen Cycling in European Forest Ecosystems. Ecological Studies 142. Springer, Berlin, pp. 63–98

    Google Scholar 

  • Bergholm J (2000). Wet deposition and throughfall – site Skogaby. CD-ROM-Database. In: Schulze E.-D. (eds). Carbon and Nitrogen Cycling in European Forest Ecosystems. Ecological Studies 142. Springer, Berlin

    Google Scholar 

  • Bohlen PJ, Groffman PM, Driscoll CT, Fahey TJ, Siccama TG (2001). Plant-soil-microbial interactions in a northern hardwood forest. Ecology 82:965–978

    Article  Google Scholar 

  • Campbell J.L., Eagar C., McDowell W.H., Hornbeck J.W. (2000). Analysis of nitrogen dynamics in the Lye Brook Wilderness Area, Vermont, USA. Water Air Soil Pollut. 122:63–75

    Article  Google Scholar 

  • Corre M.D., Beese F., Brumme R. (2003). Soil nitrogen cycle in high nitrogen deposition forest: changes under nitrogen saturation and liming. Ecol. Appl. 13(2):287–298

    Google Scholar 

  • Dambrine E (2000). Throughfall data. Site Aubure beech and spruce. CD-ROM-Database. In: Schulze E.-D. (eds). Carbon and Nitrogen Cycling in European Forest Ecosystems. Ecological Studies 142. Springer, Berlin, pp. 78–82

    Google Scholar 

  • DeHayes D.H., Schaberg P.G., Strimbeck G.R. (2001). Red spruce cold hardiness and freezing injury susceptibility. In: Bigras F (eds). Conifer Cold Hardiness. Kluwer Academic Publishers, Dordrecht the Netherlands, pp. 495–529

    Google Scholar 

  • Dise N.B., Matzner E., Gundersen P. (1998). Synthesis of nitrogen pools and fluxes from European forest ecosystems. Water Air Soil Poll. 105:143–154

    Article  Google Scholar 

  • Emmett B.A., Kjønaas O.J., Gundersen P., Koopmans C., Tietema A., Sleep D (1998). Natural abundance of 15N in forests across a nitrogen deposition gradient. Forest Ecol. Manag. 101:9–18

    Article  Google Scholar 

  • Evans D. (2001). Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci. 6:121–127

    Article  Google Scholar 

  • Gebauer, Dietrich (1993). Nitrogen isotope ratios in different compartments of a mixed stand of spruce, larch and beech trees and of understorey vegetation including fungi. Isotopenpraxis Environ. Health Stud. 29:35–44

    Google Scholar 

  • Gebauer G., Giesemann A., Schulze E.-D., Jäger H.-J. (1994). Isotope ratios and concentrations of sulfur and nitrogen in needles and soils of Picea abies stands as influenced by atmospheric deposition of sulfur and nitrogen compounds. Plant Soil 164:267–281

    Article  Google Scholar 

  • Gebauer G., Schulze E.-D. (1991). Carbon and nitrogen isotope ratios in different compartments of a healthy and a declining Picea abies forest in the Fichtelbebirge, NE Bavaria. Oecologia 87:198–207

    Article  Google Scholar 

  • Gilliam F.S., Adams M.B., Yurish B.M. (1996). Ecosystem nutrient responses to chronic nitrogen inputs at the Fernow Experimental Forest, West Virginia. Can. J. Forest Res. 26:196–205

    Article  Google Scholar 

  • Goodale C.L., Aber J.D. (2001). The long-term effects of land-use history on nitrogen cycling in northern hardwood forests. Ecol. Appl. 11:253–267

    Google Scholar 

  • Gundersen, P., 1998. Effects ofenhanced nitrogen deposition in a spruce forest at Klosterhede,Denmark, examined byNH4NO3 addition. Forest Ecol.Manag., 101: 251-268.

    Article  Google Scholar 

  • Handley L.L., Austin A.T., Robinson D., Scrimegour C.M., Raven J.A., Heaton T.H.E., Schmidt S., Stewart G.R. (1999). The 15N natural abundance (15N) of ecosystem samples reflects measures of water availability. Aust. J. Plant Physiol. 26:185–199

    Article  Google Scholar 

  • Handley L.L., Raven J.A. (1992). The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant Cell Environ. 15:965–85

    Article  Google Scholar 

  • Hobbie E.A., Macko S.A., Shugart H.H. (1999). Interpretation of nitrogen isotope signatures using the NIFTE model. Oecologia 120: 405–415

    Article  Google Scholar 

  • Hobbie EA, Macko SA, Williams M (2000). Correlations between foliar d15N and nitrogen concentration may indicate plant-mycorrhizal interactions. Oecologia 122: 273–283

    Article  Google Scholar 

  • Högberg P. (1990). 15N natural abundance as a possible marker of the ectomycorrhizal habit of trees in mixed African woodlands. New Phytol. 115:483–486

    Article  Google Scholar 

  • Högberg P., Högbom L., Schinkel H., Högberg M., Johannisson C. and Wallmark H. 1996. Oecologia 108: 207–214

    Google Scholar 

  • Högberg P, Johannisson C (1993). 15N abundance of forests is correlated with losses of nitrogen. Plant Soil 157:147–150

    Google Scholar 

  • Högberg P. (1997). 15N natural abundance in soil–plant systems. New Phytol 137:179–203

    Article  Google Scholar 

  • Hooker T.D., Compton J.E. (2003). Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment. Ecol. Appl. 13:299–313

    Google Scholar 

  • Hübner H. (1986). Isotope effects of nitrogen in soil and the biosphere. In: Fritz P., Fontes J.C. (eds). Handbook of Environmental and Isotope Chemistry. The Terrestrial Environment. Elsevier, Amsterdam, pp. 361–425 Vol. 2b.

    Google Scholar 

  • Hughes J.W., Fahey T.J. (1994). Litterfall dynamics and ecosystem recovery during forest development. Forest Ecol. Manag. 63:181–198

    Article  Google Scholar 

  • Jach M.E., Ceulemans R. (2000). Effects of season, needle age and elevated atmospheric CO2 on photosynthesis in Scots pine (Pinys sylvestris). Tree Physiol. 20:145–157

    Google Scholar 

  • Jefts S., Fernandez I.J., Rustad L.E., Dail D.B. (2004). Decadal responses in soil N dynamics at the Bear Brook Watershed in Maine, USA. Forest Ecol. Manag. 189:189–205

    Article  Google Scholar 

  • Jung K., Gebauer G., Gehre M., Hofmann D., Weißflog L., Schüürmann G. (1997) Anthropogenic impacts on natural nitrogen isotope variations in Pinus sylvestris stands in an industrially polluted area. Environ. Pollut. 97:175–181

    Article  Google Scholar 

  • Kendall C., Silva S.R., Chang C.C.Y., Burns D.A., Campbell D.H. and Shanley J.B. 1996. Use of the Delta 18O and Delta 15N of nitrate to determine sources of nitrate in early spring runoff in␣forested catchments. In: Isotopes in Water Resources Management. International Atomic Energy Agency Symposium, Vienna, Austria, 1995, pp. 167–176.

  • Koba K., Hirobe M., Koyama L., Kohzu A., Tokuchi, Nadelhoffer K.J., Wada E., Takeda H. (2003). Natural 15N abundance of plants and soil N in a temperate coniferous forest. Ecosystems 6:457–469

    Article  Google Scholar 

  • Koopmans C.J., Tietema A., Verstraten J.M. (1998). Effects of reduced N deposition on litter decomposition and N cycling in tow N saturated forests in the Netherlands. Soil Biol. Biochem. 30:141–151

    Article  Google Scholar 

  • Lamontagne S (1998). Nitrogen mineralization in upland Precambrian Shield catchments: contrasting the role of lichen-covered bedrock and forested areas. Biogeochemistry 41:53–69

    Article  Google Scholar 

  • Lamontagne S., Schiff S.L., Elgood R.J. (2000). Recovery of 15N-labelled nitrate applied to a small upland boreal forest catchment. Can. J. Forest Res. 30:1165–1177

    Article  Google Scholar 

  • Lilleskov E.A., Hobbie E.A., Fahey T.J. (2002). Ectomycorrhizal fungal taxa differing in response to nitrogen deposition also differ in pure culture organic nitrogen use and natural abundance of nitrogen isotopes. New Phytol 154:219–231

    Article  Google Scholar 

  • Lovett G.M., Rueth H. (1999). Soil nitrogen transformations in beech and maple stands along a nitrogen deposition gradient. Ecol. Appl. 9:1330–1344

    Google Scholar 

  • Lovett G.M., Weathers K.W., Arthur M.A. (2002). Control of nitrogen loss from forested watersheds by soil carbon:nitrogen ratio and tree species. Ecosystems 5:712–718

    Article  Google Scholar 

  • Lovett G.M., Weathers K.W., Arthur M.A., Schultz J.C. (2004). Nitrogen cycling in a northern hardwood forest: do species matter?. Biogeochemistry 67:289–308

    Article  Google Scholar 

  • Magill A.H., Aber J.D., Hendricks J.J., Bowden R.D., Melillo J.M., Steudler P.A. (1997). Biogeochemical response of forest ecosystems to simulated chronic nitrogen deposition. Ecol. Appl. 7:402–415

    Google Scholar 

  • Manderscheid B. (2000). Wet deposition and throughfall data – site Waldstein. CD-ROM-Database. In: Schulze E.-D. (eds). Carbon and Nitrogen Cycling in European Forest Ecosystems. Ecological Studies 142. Springer, Berlin, pp. 12–12

    Google Scholar 

  • Mariotti A., Germon J.C., Hubert P., Kaiser P., Tardieux A., Tardieux P. (1981). Experimental determination of kinetic isotope fractionations: some principles; illustration for denitrification and nitrification processes. Plant Soil 62: 413–430

    Article  Google Scholar 

  • Martin C.W. (1979). Precipitation and streamwater chemistry in an undisturbed forested watershed in New Hampshire. Ecology 60:36–42

    Article  Google Scholar 

  • Martinelli L.A., Piccolo M.C., Townsend A.R., Vitousek P.M., Cuevas E., McDowell W., Robertson G.P., Santos O.C., Treseder K. (1999). Nitrogen stable isotopic composition of leaves and soil: tropical vs. temperate forests. Biogeochemistry 46(1–3):45–65

    Google Scholar 

  • McKane R.B., Johnson L.C., Shaver G.R., Nadelhoffer K.N, Rastetter E.B, Fry B., Giblin A.E., Kielland K., Kwiatkowski B.L., Laundre J.A., Murray G. (2002). Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415(6867):68–71

    Article  Google Scholar 

  • McNeil B.E., Read J.M. and Driscoll C.T. 2005. Identifying controls on the spatial variability of foliar nitrogen in a large, complex ecosystem: the role of atmospheric nitrogen deposition in the Adirondack Park, NY, USA. J. Agric. Meteorol.

  • McNulty S.G., Aber J.D., Boone R.D. (1991). Spatial changes in forest floor and foliar chemistry of spruce-fir forests across New England. Biogeochemistry 14:13–29

    Article  Google Scholar 

  • McNulty S.G., Aber J.D., Newman S.D. (1996). Nitrogen saturation in a high elevation New England spruce-fir stand. Forest Ecol. Manag. 84:109–121

    Article  Google Scholar 

  • Michelsen A., Quarmby C., Sleep D., Jonasson S. (1998). Vascular plant 15N natural abundance in health and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots. Oecologia 115:406–418

    Article  Google Scholar 

  • Miller A.E., Bowman W.D. (2002). Variation in nitrogen-15 natural abundance and nitrogen uptake traits among co-occurring alpine species: do species partition nitrogen form?. Oecologia 130:609–616

    Article  Google Scholar 

  • Mitchell M.J., Driscoll C.T., Inamdar S., McGee G., Mbila M., Raynal D.J. (2003). Nitrogen biogeochemistry in the Adirondack mountains of New York: hardwood ecosystems associated with surface water. Environ. Pollut. 123:355–364

    Article  Google Scholar 

  • Mitchell M.J., Driscoll C.T., Owen J.S., Schaefer D., Michener R., Raynal D.J. (2001) Nitrogen biogeochemistry of three hardwood ecosystems in the Adirondack Region of New York. Biogeochemistry 56:93–133

    Article  Google Scholar 

  • Mosello R. (2000). Wet deposition and throughfall data – site Collelongo. CD-ROM-Database. In: Schulze E.-D. (eds). Carbon and Nitrogen Cycling in European Forest Ecosystems. Ecological Studies 142. Springer, Berlin

    Google Scholar 

  • Nadelhoffer K.J., Downs M.R., Fry B. (1999). Sinks for 15N-enriched additions to an oak forest and a red pine plantation. Ecol. Appl. 9:72–86

    Google Scholar 

  • Nadelhoffer K.J., Downs M.R., Fry B., Aber J.D., Magill A.H., Melillo J.M. (1995). The fate of 15N-labelled nitrate additions to a northern hardwood forest in eastern Maine, USA. Oecologia 103:292–301

    Article  Google Scholar 

  • Nadelhoffer K, Downs M, Fry B, Magill A, and Aber J. 1999b. Controls on N retention and exports in a forested watershed. Environmental Monitoring and Assessment, 55: 187-210

    Article  Google Scholar 

  • Nadelhoffer K.J., Fry B. (1994). Nitrogen isotope studies in forest ecosytems. In: Lajtha K., Michener R.H. (eds). Stable Isotopes in Ecology and Environmental Science. Blackwell Scientific Publishers, Cambridge, UK

    Google Scholar 

  • Nadelhoffer KJ, Shaver G, Fry B, Giblin A, Johnson L, McKane R (1996). 15N natural abundances and N use by tundra plants. Oecologia 107:386–394

    Article  Google Scholar 

  • Nihlgard B. (1985). The ammonium hypothesis – an additional explanation to the forest decline in Europe. Ambio 14: 2–8

    Google Scholar 

  • Ollinger S.V., Aber J.D.., Lovett G.M., Milham S.E., Lathrop R.G. (1993). A spatial model of atmospheric deposition for the northeastern US. Ecol. Appl. 3:459–472

    Google Scholar 

  • Ollinger S.V., Smith M.L., Martin M.E., Hallet R.A., Goodale C.L., Aber J.D. (2002). Regional variation in foliar chemistry and N cycling among forests of diverse history and composition. Ecology 83:339–355

    Google Scholar 

  • Oyarzún C.E., Huber A. (2003). Nitrogen Export from forested and agricultural watersheds of southern Chile. Gayana Bot. 60:63–68

    Google Scholar 

  • Pardo L.H. (1999). Natural Abundance of 15N as a Tool for Assessing Patterns of Nitrogen Loss from Forested Ecosystems. Massachusetts Institute of Technology, Cambridge MA

    Google Scholar 

  • Pardo L.H., Hemond H.F., Montoya J.P., Fahey T.J. and Siccama T.G. (2002). Response of the natural abundance of 15N in forest soils and foliage to high nitrate loss following clear-cutting. Can. J. For. Res. 32:1126–1136

    Article  Google Scholar 

  • Pardo L.H., Hemond H.F., Montoya J.P., Siccama T.G. (2001). Long-term patterns in forest-floor nitrogen-15 natural abundance at Hubbard Brook, NH. Soil Sci. Soc. Am. J. 65(4):1279–1283

    Article  Google Scholar 

  • Pardo L.H., Kendall C., Pett-Ridge J. and Chang C.C.Y. 2004. Evaluating the source of streamwater nitrate using \(\delta^{15}\hbox{N}\) and \(\delta^{18}\hbox{O}\) in nitrate in two watersheds in New Hampshire, USA. Hydrol. Process. 18: 2699–2712

  • Pardo L.H., McNulty S.G., Boggs J.L. 2003. Effects of N deposition on high elevation forests in the northeastern US: foliar δ 15N patterns. Proceedings of the 88th Annual Meeting of the Ecological Society of America, Savannah, GA.

  • Pardo L.H., Schaberg P.G. and McNulty S.G. 1998. Response of natural abundance of 15N in spruce foliage to chronic N additions. Ecologcial Society of America Bulletin: Abstracts 83rd Annual Meeting, Baltimore, MD, 2–6 August 1998, p. 104.

  • Persson T. (2000). Soil carbon and nitrogen pools data. CD-ROM-Database. In: Schulze E.-D. (eds). Carbon and Nitrogen Cycling in European Forest Ecosystems. Ecological Studies 142. Springer, Berlin, pp. 12–12

    Google Scholar 

  • Persson T., Rudebeck A., Jussy J.H., Colin-Belgrand M., Priemé A., Dambrine E., Karlsson P.S. and Sjöberg R.M. (2000). Soil nitrogen turnover – mineralization, nitrification and denitrification in European forest soils. In: Schulze E-D (eds). Carbon and Nitrogen Cycling in European Forest Ecosystems. Ecological Studies 142. Springer, Berlin, pp. 297–331

    Google Scholar 

  • Persson T., Van Oene H., Harrison A.F., Karlsson P.S., Bauer G.A., Cerny J., Coûteaux M.-M., Dambrine E., Högberg P., Kjøller A., Matteucci G., Rudebeck A., Schulze E.-D., Paces T. (2000b). Experimental sites in the NIPHYS/CANIF Project. In: Schulze E.-D. (eds). Carbon and Nitrogen Cycling in European Forest Ecosystems. Ecological Studies 142. Springer, Berlin, pp. 14–46

    Google Scholar 

  • Piccolo M.C., Neill C., Cerri C. (1994). Natural abundance of 15N in soils along forest-to-pasture chronosequences in the western Brazilian Amazon Basin. Oecologia 99:112–117

    Article  Google Scholar 

  • Richardson, A.D., Bailey A.S., Denny E.G, Martin C.W. and O’Keefe J. In press. Phenology of a northern hardwood forest canopy. Global Change Biology.

  • Robinson D (2001). delta15N as an integrator of the nitrogen cycle. Trends Ecol Evol. 16(3):153–162

    Article  Google Scholar 

  • Rothstein D.E., Zak D.R., Pregitzer K.S. (1996). Nitrate deposition in northern hardwood forests and the nitrogen metabolism of Acer saccharum marsh. Oecologia 108:338–344

    Google Scholar 

  • Rueth HM, Baron JS (2002). Differences in Engelmann spruce forest biogeochemistry east and west of the Continental Divide in Colorado, USA. Ecosystems 5:45–57

    Article  Google Scholar 

  • Schaberg P.G., DeHayes D.H., Hawley G.J., Murakami P.F., Strimbeck G.R. and McNulty S.G. 2002. Effects of chronic N fertilization on foliar membranes, cold tolerance, and carbon storage in montane red spruce.

  • Schiff S.L., Devito K.J., Elgood R.J., McCrindle P.M., Spoelstra J. and Dillon P. 2002. Two adjacent forested catchments: dramatically different \(\hbox{NO}_{3}^{-}\) export. Water Resour. Res. 38: 1292, DOI 1029/2000WR000170

  • Schleppi P., Bucher-Wallin I., Siegwolf R., Saurer M., Muller N., Bucher J.B. (1999). Simulation of increased nitrogen deposition to a montane forest ecosystem: partitioning of the added 15N. Water Air Soil Pollut. 116:129–134

    Article  Google Scholar 

  • Schmidt S., Stewart G.R. (2003). d15N values of tropical savanna and monsoon forest species reflect root specializations and soil nitrogen status. Oecologia 134:569–577

    Google Scholar 

  • Schulze E.-D., Chapin III F.S., Gebauer G. (1994). Nitrogen nutrition and isotope differences among life forms at the northern treeline of Alaska. Oecologia 100:406–412

    Article  Google Scholar 

  • Sirois A., Vet R., MacTavish D. (2001). Atmospheric deposition to the Turkey Lakes Watershed: temporal variations and characteristics. Ecosystems 4:503–513

    Article  Google Scholar 

  • Stoddard J.L. (1994). Long-term changes in watershed retention of nitrogen: its causes and aquatic consequences. In: Baker L.A. (eds). Environmental Chemistry of Lakes and Reservoirs. American Chemical Society, Washington DC, pp. 223–284

    Google Scholar 

  • Taiz L., Zeiger E. (2002). Plant Physiology Third Edition. Sinauer Associates Inc., Sunderland MA

    Google Scholar 

  • Templer P.H. 2001. Direct and indirect effects of tree species on nitrogen retention in the Catskill Mountains, NY. Ph.D. Thesis, Cornell University, Ithaca, NY

  • Templer P.H., Dawson T.E. (2004). Nitrogen uptake by four tree species of the Catskill Mountains, New York: implications for nitrogen cycling. Plant Soil 262:251–261

    Article  Google Scholar 

  • Templer P.H., Lovett G.M., Weathers K.C., Findlay S.E., Dawson T.W. (2005). Influence of tree species on 15N sinks in forests of the Catskill Mountains, New York. Ecosystems 8:1–16

    Article  Google Scholar 

  • Tietema A., Emmett B.A., Gunderson P., Kjønnas O.J., Koopmans C.J. (1998). The fate of 15N-labelled nitrogen deposition in coniferous forest ecosystems. For. Ecol. Manag. 101:19–27

    Article  Google Scholar 

  • van den Driessche R. (1974). Prediction of mineral nutrient status of trees by foliar analysis. Bot. Rev. 40:347–394

    Google Scholar 

  • Vervaet H., Massart B., Boeckx P., Van Cleemput O., Hofman G. (2002). Use of principal component analysis to assess factors controlling net N mineralization in deciduous and coniferous forest soils. Biol. Fertil. Soils 36:93–101

    Article  Google Scholar 

  • Waring R.H. 1987. Nitrate pollution: a particular danger to boreal and subalpine coniferous forests. Proceedings of IUFRO Workshop, Human impacts and management of mountain forest, 4–13 Septmber 1987, Susono, Japan

Download references

Acknowledgements

This project was funded, in part, by the Northeastern States Research Cooperative, a joint program of The Rubenstein School of Environment and Natural Resources at the University of Vermont and the USDA Forest Service, Northeastern Research Station. We thank Ethan Fechter-Leggett and Felicia Santoro for laboratory work; Paul Brooks and Stephania Mambella for performing the isotope analyses; and Molly Robin-Abbott for assistance with data analysis. We thank Gerhand Gebauer and Peter Vitousek for their helpful reviews or an earlier version of the manuscript. We appreciate the reviews of two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. H. Pardo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pardo, L.H., Templer, P.H., Goodale, C.L. et al. Regional Assessment of N Saturation using Foliar and Root \(\varvec {\delta}^{\bf 15}{\bf N}\) . Biogeochemistry 80, 143–171 (2006). https://doi.org/10.1007/s10533-006-9015-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-006-9015-9

Keywords

Navigation