Skip to main content

Advertisement

Log in

Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils?

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Key recent developments in litter decomposition research are reviewed. Long-term inter-site experiments indicate that temperature and moisture influence early rates of litter decomposition primarily by determining the plants present, suggesting that climate change effects will be small unless they alter the plant forms present. Thresholds may exist at which single factors control decay rate. Litter decomposes faster where the litter type naturally occurs. Elevated CO2 concentrations have little effect on litter decomposition rates. Plant tissues are not decay-resistant; it is microbial and biochemical transformations of materials into novel recalcitrant compounds rather than selective preservation of recalcitrant compounds that creates stable organic matter. Altering single characteristics of litter will not substantially alter decomposition rates. Nitrogen addition frequently leads to greater stabilization into humus through a combination of chemical reactions and enzyme inhibition. To sequester more C in soil, we need to consider not how to slow decomposition, but rather how to divert more litter into humus through microbial and chemical reactions rather than allowing it to decompose. The optimal strategy is to have litter transformed into humic substances and then chemically or physically protected in mineral soil. Adding N through fertilization and N-fixing plants is a feasible means of stimulating humification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adair EC, Parton WJ, Del Grosso SJ, Silver WL, Harmon ME, Hall SA, Burke IC, Hart SC (2008) Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates. Glob Chang Biol 14:2636–2660

    Google Scholar 

  • Adams AB, Harrison RB, Sletten RS, Strahm BD, Turnblom EC, Jensen CM (2005) Nitrogen-fertilization impacts on carbon sequestration and flux in managed coastal Douglas-fir stands of the Pacific Northwest. For Ecol Manag 220:313–325

    Article  Google Scholar 

  • Agren GI, Bosatta E, Magill AH (2001) Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition. Oecologia 128:94–98

    Article  Google Scholar 

  • Ayres E, Steltzer H, Berg S, Wall DH (2009) Soil biota accelerate decomposition in high-elevation forests by specializing in the breakdown of litter produced by the plant species above them. J Ecol 97:901–912

    Article  Google Scholar 

  • Bahri H, Rasseb DP, Rumpela C, Dignaca M-F, Bardouxa G, Mariotti A (2008) Lignin degradation during a laboratory incubation followed by 13C isotope analysis. Soil Biol Biochem 40:1916–1922

    Article  Google Scholar 

  • Berg B, Matzner E (1997) Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ Rev 5:1–25

    Article  Google Scholar 

  • Berg B, Berg MP, Bottner P, Box E, Breymeyer A, Calvo de Anta R, Coûteaux MM, Gallardo A, Escudero A, Kratz W, Madeira M, Mälkönen E, Meentemeyer V, Munoz F, Piussi P, Remacle J, Virzo De Santo A (1993) Litter mass loss rates in pine forests of Europe and Eastern United States: some relationships with climate and litter quality. Biogeochemistry 20:127–159

    Article  Google Scholar 

  • Berg B, Ekbohm G, Johansson MB, McClaugherty C, Rutigliano F, DeSanto AV (1996) Maximum decomposition limits of forest litter types: a synthesis. Can J Bot 74:659–672

    Article  Google Scholar 

  • Berg B, McClaugherty C, De Santo AV, Johnson D (2001) Humus buildup in boreal forests: effects of litter fall and its N concentration. Can J For Res 31:988–998

    Article  Google Scholar 

  • Berg B, Johansson M-B, Nilsson A, Gundersen P, Norell L (2009) Sequestration of carbon in the humus layer of Swedish forests—direct measurements. Can J For Res 39:962–975

    Article  Google Scholar 

  • Bird JA, Kleber M, Torn MS (2008) 13C and 15N stabilization dynamics in soil organic matter fractions during needle and fine root decomposition. Org Geochem 39:465–477

    Article  Google Scholar 

  • Bunnell FL, Tait DEN, Flanagan PW, Van Cleve K (1977) Microbial respiration and substrate weight loss 1. A general model of the influences of abiotic variables. Soil Biol Biochem 9:33–40

    Article  Google Scholar 

  • Cárcamo HA, Abe TA, Prescott CE, Holl B, Chanway CP (2000) Influence of millipedes on litter decomposition, N mineralization, and microbial communities in a coastal forest in British Columbia, Canada. Can J For Res 30:817–826

    Article  Google Scholar 

  • Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81:2359–2365

    Article  Google Scholar 

  • Cornelissen JHC (1996) An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J Ecol 84:573–582

    Article  Google Scholar 

  • Cornelissen JHC, Quested HM, Gwynn-Jones D, Van Logtestijn RSP, De Beus MAH, Kondratchuk A, Callaghan TV, Aerts R (2004) Leaf digestibility and litter decomposability are related in a wired range of subarctic plant species and types. Funct Ecol 18:779–786

    Article  Google Scholar 

  • Cornelissen JHC, van Bodegom PM, Aerts R, Callaghan TV, van Logtestijn RSP, Alatalo J, Chapin FS, Gerdol R, Gudmundsson J, Gwynn-Jones D, Hartley AE, Hik DS, Hofgaard A, Jónsdóttir IS, Karlsson S, Klein JA, Laundre J, Magnusson B, Michelsen A, Molau U, Onipchenko VG, Quested HM, Sandvik SM, Schmidt IK, Shaver GR, Solheim B, Soudzilovskaia NA, Stenström A, Tolvanen A, Totland Ø, Wada N, Welker JM, Zhao X, Team MOL (2007) Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecol Lett 10:619–627

    Article  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  Google Scholar 

  • Crow SE, Lajtha K, Filley TR, Swanston CW, Bowden RD, Caldwell BA (2009) Sources of plant-derived carbon and stability of organic matter in soil: implications for global change. Glob Chang Biol 15:2003–2019

    Article  Google Scholar 

  • Cusack DF, Chou WW, Yang WH, Harmon ME, Silver WL, The LIDET Team (2009) Controls on long-term root and leaf litter decomposition in neotropical forests. Glob Chang Biol 15:1339–1355

    Article  Google Scholar 

  • Dijkstra FA, Cheng WX (2007) Interactions between soil and tree roots accelerate long-term soil carbon decomposition. Ecol Lett 10:1046–1053

    Article  Google Scholar 

  • Ekschmitt K, Liu M, Vetter S, Fox O, Wolters V (2005) Strategies used by soil biota to overcome soil organic matter stability—why is dead organic matter left over in the soil? Geoderma 128:167–176

    Article  Google Scholar 

  • Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–280

    Article  Google Scholar 

  • Fortunel C, Garnier E, Joffre R, Kazakou E, Quested H, Grigulis K, Lavorel S, Ansquer P, Castro H, Cruz P, Doležal J, Eriksson O, Freitas H, Golodets C, Jouany C, Kigel J, Kleyer M, Lehsten V, Lepš J, Meier T, Pakeman R, Papadimitriou M, Papanastasis VP, Quétier F, Robson M, Sternberg M, Theau J-P, Thébault A, Zarovali M (2009) Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 90:598–611

    Article  Google Scholar 

  • Fox O, Vetter S, Ekschmitt K, Wolters V (2006) Soil fauna modifies the recalcitrance-persistence relationship of soil carbon pools. Soil Biol Biochem 38:1353–1363

    Article  Google Scholar 

  • Frey SD, Knorr M, Parrent JL, Simpson RT (2004) Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. For Ecol Manag 196:159–171

    Article  Google Scholar 

  • Galvana P, Ponge J-F, Chersicha S, Zanellad A (2008) Humus components and soil biogenic structures in Norway spruce ecosystems. Soil Sci Soc Am J 72:548–557

    Article  Google Scholar 

  • Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Glob Chang Biol 6:751–765

    Article  Google Scholar 

  • Goebel M-O, Woche SK, Bachmann J (2009) Do soil aggregates really protect encapsulated organic matter against microbial decomposition? Biologia 64:443–448

    Article  Google Scholar 

  • Grandy AS, Neff JC (2008) Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function. Sci Total Environ 404:297–307

    Article  Google Scholar 

  • Grayston SJ, Prescott CE (2005) Microbial communities in forest floors under four tree species in coastal British Columbia. Soil Biol Biochem 37:1157–1167

    Article  Google Scholar 

  • Hagedorn F, Spinnler D, Siegwolf R (2003) Increased N deposition retards mineralization of old soil organic matter. Soil Biol Biochem 35:1683–1692

    Article  Google Scholar 

  • Harmon ME, Silver WL, Fasth B, Chen H, Burke IC, Parton WJ, Hart SC, Currie WS, LIDET (2009) Long-term patterns of mass loss during decomposition of leaf and fine root litter: an intersite comparison. Glob Chang Biol 15:1320–1338

    Article  Google Scholar 

  • Heim A, Schmidt MWI (2006) Lignin turnover in arable soil and grassland analysed with two different labelling approaches. Eur J Soil Sci 58:599–608

    Article  Google Scholar 

  • Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–522

    Article  Google Scholar 

  • Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268

    Article  Google Scholar 

  • Johnson DW (1992) Effects of forest management on soil carbon storage. Water Air Soil Pollut 64:83–120

    Article  Google Scholar 

  • Johnson DW, Curtis PS (2001) Effects of forest management on soil C and N storage: meta analysis. For Ecol Manag 140:227–238

    Article  Google Scholar 

  • Kampichler C, Bruckner A (2009) The role of microarthropods in terrestrial decomposition: a meta-analysis of 40 years of litterbag studies. Biol Rev 84:375–389

    Article  Google Scholar 

  • Kazakou E, Vile D, Shipley B, Gallet C, Garnier E (2006) Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession. Funct Ecol 20:21–30

    Article  Google Scholar 

  • Knorr M, Frey SD, Curtio PS (2005) Nitrogen additions and litter decomposition: a meta analysis. Ecology 86:3252–3253

    Article  Google Scholar 

  • Kogel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162

    Article  Google Scholar 

  • Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498

    Article  Google Scholar 

  • Lauenroth WK, Gill R 2003 Turnover of root systems. In: de Kroon H, Visser EJW (eds) Root ecology. Ecological studies 168. Springer, Berlin, pp 61–89

  • Lindedam J, Magid J, Poulsen P, Luxhøi J (2009) Tissue architecture and soil fertility controls on decomposer communities and decomposition of roots. Soil Biol Biochem 41:1040–1049

    Article  Google Scholar 

  • Malkonen E, Kukkola M (1991) Effect of long-term fertilization on the biomass production and nutrient status of Scots pine stands. Fertil Res 27:113–127

    Article  Google Scholar 

  • McTiernan KB, Coûteaux M-M, Berg B, Berg MP, Calvo de Anta R, Gallardo A, Kratz W, Piussi P, Remacle J, Virzo De Santo A (2003) Changes in chemical composition of Pinus sylvestris needle litter during decomposition along a European coniferous forest climatic transect. Soil Biol Biochem 35:801–812

    Article  Google Scholar 

  • Mori K, Bernier N, Kosakic T, Ponge J-F (2009) Tree influence on soil biological activity: what can be inferred from the optical examination of humus profiles? Eur J Soil Biol 45:290–300

    Article  Google Scholar 

  • Nave LE, Vance ED, Swanston CW, Curtis PS (2009) Impacts of elevated N inputs on north temperate forest soil C storage, C/N, and net N-mineralization. Geoderma 153:231–240

    Article  Google Scholar 

  • Neff JC, Townsend R, Glexner G, Lehmann SJ, Turnbull J, Bowman WD (2002) Variable effect of nitrogen additions on stability and turnover of soil carbon. Nature 419:915–917

    Article  Google Scholar 

  • Nohrstedt H-O (1992) Soil chemistry in a Pinus sylvestris stand after repeated treatment with two types of ammonium nitrate fertilizer. Scand J For Res 7:457–462

    Article  Google Scholar 

  • Norby RJ, Cotrufo MF (1998) A question of litter quality. Nature 396:17–18

    Article  Google Scholar 

  • Olsson P, Linder S, Giesler R, Hogberg P (2005) Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration. Glob Chang Biol 11:1745–1753

    Article  Google Scholar 

  • Osler GHR, Sommerkorn M (2007) Toward a complete soil C and N cycle: incorporating the soil fauna. Ecology 88:1611–1621

    Article  Google Scholar 

  • Ponge J-F (1991) Succession of fungi and fauna during decomposition of needles in a small area of Scots pine litter. Plant Soil 138:99–113

    Article  Google Scholar 

  • Powers JS, Montgomery RA, Adair EC, Brearley FQ, DeWalt SJ, Castanho CT, Chave J, Deinert E, Ganzhorn JU, Gilbert ME, González-Iturbe JA, Bunyavejchewin S, Grau HR, Harms KE, Hiremath A, Iriarte-Vivar S, Manzane E, de Oliveira AA, Poorter L, Ramanamanjato J-B, Salk C, Varela A, Weiblen GD, Lerdau MT (2009) Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. J Ecol 97:801–811

    Article  Google Scholar 

  • Prescott CE, Zabek LM, Staley CL, Kabzems R (2000) Decomposition of broadleaf and needle litter in forests of British Columbia: influences of litter type, forest type and litter mixtures. Can J For Res 30:1742–1750

    Article  Google Scholar 

  • Prescott CE, Vesterdal L, Simard SW, Preston CM (2004) Influence of initial chemistry on decomposition of foliar litter in contrasting forest types in British Columbia. Can J For Res 34:1714–1729

    Article  Google Scholar 

  • Preston CM, Trofymow JA, Sayer BG, Niu J (1997) 13C nuclear magnetic resonance spectroscopy with cross-polarization and magic-angle spinning investigation of the proximate analysis fractions used to assess litter quality in decomposition studies. Can J Bot 75:1601–1613

    Article  Google Scholar 

  • Rasse DP, Rumpel C, Dignac M-F (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. Plant Soil 269:341–356

    Article  Google Scholar 

  • Rawlins AJ, Bull ID, Poirier N, Ineson P, Evershad RP (2006) The biochemical transformation of oak (Quercus robur) leaf litter consumed by the pill millipede (Glomeris marginata). Soil Biol Biochem 38:1063–1076

    Article  Google Scholar 

  • Rawlins AJ, Bull ID, Ineson P, Evershad RP (2007) Stabilisation of soil organic matter in invertebrate fæcal pellets through leaf litter grazing. Soil Biol Biochem 39:1202–1205

    Article  Google Scholar 

  • Resh SC, Binkley D, Parrotta JA (2002) Greater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus species. Ecosystems 5:217–231

    Article  Google Scholar 

  • Rothwell JJ, Futter MN, Dise NB (2008) A classification and regression tree model of controls on dissolved inorganic nitrogen leaching from European forests. Environ Pollut 156:544–552

    Article  Google Scholar 

  • Sanborn PT, Brockley RP (2009) Decomposition of pure and mixed foliage litter in a young lodgepole pine—Sitka alder stand in the central interior of British Columbia. Can J For Res 39:2257–2262

    Article  Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602

    Article  Google Scholar 

  • Silver WL, Miya RK (2001) Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–419

    Google Scholar 

  • Sollins P, Homann P, Caldwell BA (1996) Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74:65–105

    Article  Google Scholar 

  • Strickland MS, Osburn E, Lauber C, Fierer N, Bradford MA (2009) Litter quality is in the eye of the beholder: initial decomposition rates as a function of inoculums characteristics. Funct Ecol 23:627–636

    Article  Google Scholar 

  • Swanston C, Homann PS, Caldwell BA, Myrold DD, Ganio L, Sollins P (2004) Long-term effects of elevated nitrogen on forest soil organic matter stability. Biogeochemistry 70:227–250

    Article  Google Scholar 

  • Taylor BR, Prescott CE, Parsons WFJ, Parkinson D (1991) Substrate control of litter decomposition in four Rocky Mountain coniferous forests. Can J Bot 69:2242–2250

    Article  Google Scholar 

  • Trofymow JA, Moore TR, Titus B, Prescott C, Morrison I, Siltanen M, Smith S, Fyles J, Wein R, Camiré C, Duschene L, Kozak L, Kranabetter M, Visser S (2002) Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Can J For Res 32:789–804

    Article  Google Scholar 

  • Turk TD, Schmidt MG, Roberts NJ (2008) The influence of bigleaf maple on forest floor and mineral soil properties in a coniferous forest in coastal British Columbia. For Ecol Manag 255:1874–1882

    Article  Google Scholar 

  • Vesterdal L, Schmidt IK, Callesen I, Nilsson LO, Gundersen P (2008) Carbon and nitrogen in forest floor and mineral soil under six common European tree species. For Ecol Manag 255:35–48

    Article  Google Scholar 

  • Vivanco L, Austin AT (2008) Tree species identity alters forest litter decomposition through long-term plant and soil interactions in Patagonia, Argentina. J Ecol 96:727–736

    Article  Google Scholar 

  • von Lutzow M, Kogel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426–445

    Article  Google Scholar 

  • Waldrop MP, Firestone MK (2004) Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions. Biogeochemistry 67:235–248

    Article  Google Scholar 

  • Wardle DA (2006) The influence of biotic interactions on soil biodiversity. Ecol Lett 9:870–886

    Article  Google Scholar 

  • Wardle DA, Zackrisson O, Hörnberg G, Gallet C (1997) The influence of island area on ecosystem properties. Science 277:1296–1299

    Article  Google Scholar 

  • Wardle DA, Bardgett RD, Walker LR, Bonner KI (2009) Among- and within-species variation in litter decomposition in contrasting long-term chronosequences. Funct Ecol 23:442–453

    Article  Google Scholar 

  • Wolters V (2000) Invertebrate control of soil organic matter stability. Biol Fertil Soils 31:1–19

    Article  Google Scholar 

  • Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:1–9

    Article  Google Scholar 

  • Zhou G, Guan L, Wei X, Tang X, Liu S, Liu J, Zhang D, Yan J (2008) Factors influencing leaf litter decomposition: an intersite decomposition experiment across China. Plant Soil 311:61–72

    Article  Google Scholar 

Download references

Acknowledgements

I thank Mike Starr and the other organizers of BIOGEOMON 2009 for inviting this review, Bob Edmonds and Dan Binkley for thoughtful reviews and insightful comments on the manuscript, and Dale Johnson for ably serving as Editor of this special issue. This paper is dedicated to the memory of Dennis Parkinson, PhD, FRSC (1927–2009), whose enthusiasm for soil ecology and passion for science inspired many of us to embark on this fascinating life-long journey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cindy E. Prescott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prescott, C.E. Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils?. Biogeochemistry 101, 133–149 (2010). https://doi.org/10.1007/s10533-010-9439-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-010-9439-0

Keywords

Navigation