Skip to main content

Advertisement

Log in

Biogeochemical processes along a nutrient gradient in a tropical ombrotrophic peatland

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Biogeochemical properties, including nutrient concentrations, carbon gas fluxes, microbial biomass, and hydrolytic enzyme activities, were determined along a strong nutrient gradient in an ombrotrophic peatland in the Republic of Panama. Total phosphorus in surface peat decreased markedly along a 2.7 km transect from the marginal Raphia taedigera swamp to the interior sawgrass swamp, with similar trends in total nitrogen and potassium. There were parallel changes in the forest structure: basal area decreased dramatically from the margins to the interior, while tree diversity was greatest at sites with extremely low concentrations of readily-exchangeable phosphate. Soil microbial biomass concentrations declined in parallel with nutrient concentrations, although microbes consistently contained a large proportion (up to 47%) of the total soil phosphorus. Microbial C:P and N:P ratios and hydrolytic enzyme activities, including those involved in the cycles of carbon, nitrogen, and phosphorus, increased towards the nutrient-poor wetland interior, indicating strong below-ground nutrient limitation. Soil CO2 fluxes and CH4 fluxes did not vary systematically along the nutrient gradient, although potential soil respiration determined on drained soils was lower from nutrient-poor sites. Soil respiration responded strongly to drainage and increased temperature. Taken together, our results demonstrate that nutrient status exerts a strong control on above and below-ground processes in tropical peatlands with implications for carbon dynamics and hence long term development of such ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen JA, Krauss KW, Ewel KC, Keeland BD, Waguk EE (2005) A tropical freshwater wetland: I. Structure, growth, and regeneration. Wetl Ecol Manag 13:657–669

    Article  Google Scholar 

  • Allison VJ, Condron LM, Peltzer DA, Richardson SJ, Turner BL (2007) Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand. Soil Biol Biochem 39:1770–1781

    Article  Google Scholar 

  • Anderson JAR (1983) The tropical peat swamps of Western Malesia. In: Gore AJP (ed) Mires: swamp, bog, fen and moor: regional studies, vol 4B. Elsevier Scientific, Amsterdam, pp 181–199

  • Andriesse JP (1988) Nature and management of tropical peat soils. FAO Soils Bulletin No. 59, Food and Agriculture Organization of the United Nations, Rome, p 165

    Google Scholar 

  • Bachoon D, Jones RD (1992) Potential rates of methanogenesis in sawgrass marshes with peat and marl soils in the Everglades. Soil Biol Biochem 24:21–27

    Article  Google Scholar 

  • Battle JM, Golladay SW (2007) How hydrology, habitat type, and litter quality affect leaf breakdown in wetlands on the gulf coastal plain of Georgia. Wetlands 27:251–260

    Article  Google Scholar 

  • Belyea LR, Baird AJ (2006) Beyond “The limits to peat bog growth’’: cross-scale feedback in peatland development. Ecol Monogr 76:299–322

    Article  Google Scholar 

  • Bernal B, Mitsch WJ (2008) A comparison of soil carbon pools and profiles in wetlands in Costa Rica and Ohio. Ecol Eng 34:311–323

    Article  Google Scholar 

  • Brady MA (1997) Organic matter dynamics of coastal peat deposits in Sumarta, Indonesia. OhD thesis, 259 pp, University of British Columbia

  • Bragazza L, Freeman C, Jones T, Rydin H, Limpens J, Fenner N, Ellis T, Gerdol R, Hajek M, Hajek T, Iacumin P, Kutnar L, Tahvanainen T, Toberman H (2006) Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proc Natl Acad Sci USA 103:19386–19389

    Article  Google Scholar 

  • Bridgham SD, Richardson CJ (1992) Mechanisms controlling soil respiration (CO2 and CH4) in southern peatlands. Soil Biol Biochem 24:1089–1099

    Article  Google Scholar 

  • Brookes PC, Powlson DS, Jenkinson DS (1982) Measurement of microbial biomass phosphorus in soil. Soil Biol Biochem 14:319–329

    Article  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil-nitrogen––a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842

    Article  Google Scholar 

  • Cabrera ML, Beare MH (1993) Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts. Soil Sci Soc Am J 57:1007–1012

    Article  Google Scholar 

  • Chimner RA (2004) Soil respiration rates of tropical peatlands in Micronesia and Hawaii. Wetlands 24:51–56

    Article  Google Scholar 

  • Chimner RA, Ewel KC (2004) Differences in carbon fluxes between forested and cultivated micronesian tropical peatlands. Wetl Ecol Manag 12:419–427

    Article  Google Scholar 

  • Cleveland CC, Liptzin D (2007) C:N:P stoichiometry in soil: is there a ‘‘Redfield ratio’’ for the microbial biomass? Biogeochemistry 85:235–252

    Article  Google Scholar 

  • Colwell RK (2005) EstimateS: statistical estimation of species richness and shared species from samples. Version 7.5. User’s guide and application. http://purl.oclc.org/estimates

  • Day JW, Christian RR, Boesch DM, Yanez-Arancibia A, Morris J, Twilley RR, Naylor L, Schaffner L, Stevenson C (2008) Consequences of climate change on the ecogeomorphology of coastal wetlands. Estuar Coasts 31:477–491

    Article  Google Scholar 

  • Denmead O (2008) Approaches to measuring fluxes of methane and nitrous oxide between landscapes and the atmosphere. Plant Soil 309:5–24. doi:10.1007/s11104-008-9599-z

    Article  Google Scholar 

  • Ellison AM (2004) Wetlands of Central America. Wetl Ecol Manag 12:3–55

    Article  Google Scholar 

  • Estadística Panameña (2001) Situación física; meteorología año 2001. Sección 121, clima. Instituto Nacional de Estadística y Censo, Contraloría General de la República, Panamá. www.contraloria.gob.pa/inec/

  • Ferreira LV, Stohlgren TJ (1999) Effects of river level fluctuation on plant species richness, diversity, and distribution in a floodplain forest in Central Amazonia. Oecologia 120:582–587

    Article  Google Scholar 

  • Furukawa Y, Inubushi K, Ali M, Itang AM, Tsuruta H (2005) Effect of changing ground water levels caused by land-use changes on greenhouse gas fluxes from tropical peatlands. Nutr Cycl Agroecosyst 71:81–91

    Article  Google Scholar 

  • Haase R (1999) Litterfall and nutrient return in seasonally flooded and non-flooded forest of the Pantanal, Mato Grosso, Brazil. For Ecol Manag 117:129–147

    Article  Google Scholar 

  • Hadi A, Inubushi K, Furukawa Y, Purnomo E, Rasmado M, Tsuruta H (2005) Green house gas emissions from tropical peatlands of Kalimantan, Indonesia. Nutr Cycl Agroecosyst 71:73–80

    Article  Google Scholar 

  • Hoekman DH (2007) Satellite radar observation of tropical peat swamp forest as a tool for hydrological modelling and environmental protection. Aquat Conserv Marine Freshw Ecosyst 17:265–275

    Article  Google Scholar 

  • Ingram HAP (1982) Size and shape in raised mire ecosystems––a geophysical model. Nature 297:300–303

    Article  Google Scholar 

  • Inubushi K, Otake S, Furukawa Y, Shibasaki N, Ali M, Itang AM, Tsuruta H (2005) Factors influencing methane emission from peat soils: comparison of tropical and temperate wetlands. Nutr Cycl Agroecosyst 71:93–99

    Article  Google Scholar 

  • Jackson CR, Vallaire SC (2007) Microbial activity and decomposition of fine particulate organic matter in a Louisiana cypress swamp. J N Am Benthol Soc 26:743–753

    Article  Google Scholar 

  • Jackson CR, Liew KC, Yule CM (2009) Structural and functional changes with depth in microbial communities in a tropical Malaysian peat swamp forest. Microb Ecol 57:402–412

    Article  Google Scholar 

  • Jaenicke J, Rieley JO, Mott C, Kimman P, Siegert F (2008) Determination of the amount of carbon stored in Indonesian peatlands. Geoderma 147:151–158

    Article  Google Scholar 

  • Jauhiainen J, Takahashi H, Heikkinen JEP, Martikainen PJ, Vasander H (2005) Carbon fluxes from a tropical peat swamp forest floor. Global Change Biol 11:1788–1797

    Article  Google Scholar 

  • Johnson S, Rejmankova E (2005) Impacts of land use on nutrient distribution and vegetation composition of freshwater wetlands in Northern Belize. Wetlands 25:89–100

    Article  Google Scholar 

  • Keddy PA, Fraser LH, Solomeshch AI, Junk WJ, Campbell DR, Arroyo MTK, Alho CJR (2009) Wet and wonderful: the world’s largest wetlands are conservation priorities. Bioscience 59:39–51

    Article  Google Scholar 

  • Keller JK, Bauers AK, Bridgham SD, Kellogg LE, Iversen CM (2006) Nutrient control of microbial carbon cycling along an ombrotrophic-minerotrophic peatland gradient. J Geophy Res Biogeosci 111:G03006. doi:10.1029/2005JG000152

    Article  Google Scholar 

  • Keogh TM, Keddy PA, Fraser LH (1999) Patterns of tree species richness in forested wetlands. Wetlands 19:639–647

    Article  Google Scholar 

  • Koponen P, Nygren P, Sabatier D, Rousteau A, Saur E (2004) Tree species diversity and forest structure in relation to microtopography in a tropical freshwater swamp forest in French Guiana. Plant Ecol 173:17–32

    Article  Google Scholar 

  • Langner A, Siegert F (2009) Spatiotemporal fire occurrence in Borneo over a period of 10 years. Global Change Biol 15:48–62

    Article  Google Scholar 

  • Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G (2008) Peatlands and the carbon cycle: from local processes to global implications a synthesis. Biogeosciences 5:1379–1419

    Article  Google Scholar 

  • Lopez OR, Kursar TA (2007) Interannual variation in rainfall, drought stress and seedling mortality may mediate monodominance in tropical flooded forests. Oecologia 154:35–43

    Article  Google Scholar 

  • Maltby E, Immirzi P (1993) Carbon dynamics in peatlands and other wetland soils: regional and global perspectives. Chemosphere 27:999–1023

    Article  Google Scholar 

  • Marx M-C, Wood M, Jarvis SC (2001) A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol Biochem 33:1633–1640

    Article  Google Scholar 

  • Melling L, Hatano R, Goh KJ (2005a) Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia. Tellus 57B:1–11

    Google Scholar 

  • Melling L, Hatano R, Goh KJ (2005b) Methane fluxes from three ecosystems in tropical peatland of Sarawak, Malaysia. Soil Biol Biochem 37:1445–1453

    Article  Google Scholar 

  • Metcalfe DB, Meir P, Aragao L, Malhi Y, da Costa ACL, Braga A, Goncalves PHL, de Athaydes J, de Almeida SS, Williams M (2007) Factors controlling spatio-temporal variation in carbon dioxide efflux from surface litter, roots, and soil organic matter at four rain forest sites in the eastern Amazon. J Geophys Res-Biogeo 112:G04001. doi:10.1029/2007JG000443

    Article  Google Scholar 

  • Miller M, Palojärvi A, Rangger A, Reeslev M, Kjøller A (1998) The use of fluorogenic substrates to measure fungal presence and activity in soil. Appl Environ Microbiol 64:613–617

    Google Scholar 

  • Moreno-Casasola P, Rosas HL, Mata DI, Peralta LA, Travieso-Bello AC, Warner BG (2009) Environmental and anthropogenic factors associated with coastal wetland differentiation in La Mancha, Veracruz, Mexico. Plant Ecol 200:37–52

    Article  Google Scholar 

  • Myers RG, Thien SJ, Pierzynski GM (1999) Using an ion sink to extract microbial phosphorus from soil. Soil Sci Soc Am J 63:1229–1237

    Article  Google Scholar 

  • Olander LP, Vitousek PM (2000) Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry 49:175–190

    Article  Google Scholar 

  • Page SE, Rieley JO, Shotyk OW, Weiss D (1999) Interdependence of peat and vegetation in a tropical peat swamp forest. Philos Trans R Soc Lon B 354:1885–1897

    Article  Google Scholar 

  • Penton CR, Newman S (2008) Enzyme-based resource allocated decomposition and landscape heterogeneity in the Florida Everglades. J Environ Qual 37:972–976

    Article  Google Scholar 

  • Phillips VD (1998) Peatswamp ecology and sustainable development in Borneo. Biodivers Conserv 7:651–671

    Article  Google Scholar 

  • Phillips S, Rouse GE, Bustin RM (1997) Vegetation zones and diagnostic pollen profiles of a coastal peat swamp, Bocas del Toro, Panama. Palaeogeogr Palaeoclim Palaeoecol 128:301–338

    Article  Google Scholar 

  • Pyke CR, Condit R, Aguilar S, Lao S (2001) Floristic composition across a climatic gradient in a neotropical lowland forest. J Veg Sci 12:553–566

    Article  Google Scholar 

  • Qiu S, McComb AJ, Bell RW (2002) Phosphorus-leaching from litterfall in wetland catchments of the Swan Coastal Plain, southwestern Australia. Hydrobiologia 472:95–105

    Article  Google Scholar 

  • Raich JW, Russell AE, Bedoya-Arrieta R (2007) Lignin and enhanced litter turnover in tree plantations of lowland Costa Rica. For Ecol Manag 239:128–135

    Article  Google Scholar 

  • Ramberg L, Hancock P, Lindholm M, Meyer T, Ringrose S, Sliva J, Van As J, VanderPost C (2006) Species diversity of the Okavango Delta, Botswana. Aquat Sci 68:310–337

    Article  Google Scholar 

  • Rejmánková E, Macek P (2008) Response of root and sediment phosphatase activity to increased nutrients and salinity. Biogeochemistry 90:159–169

    Article  Google Scholar 

  • Rieley JO, Page SE, Shepherd PA (1997) Tropical bog forests of South East Asia. In: Stoneman RE, Parkyn L, Ingram HAP (eds) Conserving peatlands. CAB International, Wallingford, pp 35–41

    Google Scholar 

  • Rodriguez-Gonzalez PM, Ferreira MT, Albuquerque A (2008) Spatial variation of wetland woods in the latitudinal transition to arid regions: a multiscale approach. J Biogeogr 35:1498–1511

    Article  Google Scholar 

  • Shimada S, Takahashi H, Haraguchi A, Kaneko M (2001) The carbon content characteristics of tropical peats in Central Kalimantan, Indonesia: estimating their spatial variability in density. Biogeochemistry 53:249–267

    Article  Google Scholar 

  • Silvius MJ, Giesen W (1996) Towards integrated management of swamp forests: a case study from Sumatra. In: Tropical lowland peatlands of Southeast Asia. Proceedings of a workshop on integrated planning and management of tropical lowland peatlands, Cisarua, Indonesia, 3–8 July 1992. International Union for Conservation of Nature and Natural Resources (IUCN), pp 247–267

  • Troxler TG (2007) Patterns of phosphorus, nitrogen and δ 15N along a peat development gradient in a coastal mire, Panama. J Trop Ecol 23:683–691

    Article  Google Scholar 

  • Turner BL, Romero TE (2010) Stability of hydrolytic enzyme activity and microbial phosphorus during storage of tropical rain forest soils. Soil Biol Biochem 42:459–465

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass-C. Soil Biol Biochem 19:703–707

    Article  Google Scholar 

  • Vegas-Vilarrubia T, Laseras PL (2008) Edaphic patterns as related to beta-diversity in swamp forests and meadows of the lower Orinoco delta plain (Venezuela). Wetlands 28:616–631

    Article  Google Scholar 

  • Webb EL, Peralta R (1998) Tree community diversity of lowland swamp forest in Northeast Costa Rica, and changes associated with controlled selective logging. Biodivers Conserv 7:565–583

    Article  Google Scholar 

  • Widyatmoko D, Burgman MA (2006) Influences of edaphic factors on the distribution and abundance of a rare palm (Cyrtostachys renda) in a peat swamp forest in eastern Sumatra, Indonesia. Austral Ecol 31:964–974

    Article  Google Scholar 

  • Winston RB (1994) Models of the geomorphology, hydrology, and development of domed peat bodies. Geol Soc Am Bull 106:1594–1604

    Article  Google Scholar 

  • Wosten JHM, Clymans E, Page SE, Rieley JO, Limin SH (2008) Peat-water interrelationships in a tropical peatland ecosystem in Southeast Asia. Catena 73:212–224

    Article  Google Scholar 

  • Wright AL, Reddy KR, Corstanje R (2009) Patterns of heterotrophic microbial activity in eutrophic and oligotrophic peatlands. Euro J Soil Biol 45:131–137

    Article  Google Scholar 

Download references

Acknowledgements

We thank Tania Romero for laboratory assistance, Eric Brown for field support, Emma Wright and Jodie Hartill for assistance in collecting and compiling the potential respiration data, and staff at the Smithsonian Tropical Research Institute station in Bocas del Toro for logistical support. Funding from the University of Nottingham supported this project. Omar R. Lopez was funded by a postdoctoral research fellowship by the National Secretariat for Science and Technology of the Republic of Panama (No. 270-2006-87). Alexander Cheesman was funded by a grant from the USDA–CREES National Research Initiative (No. 2004-35107-14918).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofie Sjögersten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sjögersten, S., Cheesman, A.W., Lopez, O. et al. Biogeochemical processes along a nutrient gradient in a tropical ombrotrophic peatland. Biogeochemistry 104, 147–163 (2011). https://doi.org/10.1007/s10533-010-9493-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-010-9493-7

Keywords

Navigation