Skip to main content
Log in

Genotoxicity and mutagenicity of iron and copper in mice

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The toxicity of trace metals is still incompletely understood. We have previously shown that a single oral dose of iron or copper induces genotoxic effects in mice in vivo, as detected by single cell gel electrophoresis (comet assay). Here, we report the effect of these metals on subchronic exposure. Mice were gavaged for six consecutive days with either water, 33.2 mg/kg iron, or 8.5 mg/kg copper. On the 7th day, the neutral and alkaline comet assays in whole blood and the bone marrow micronucleus (MN) test were used as genotoxicity and mutagenicity endpoints, respectively. Particle induced X-ray emission was used to determine liver levels of the metals. Females showed a slightly lower DNA damage background, but there was no significant difference between genders for any endpoint. Iron and copper were genotoxic and mutagenic. While copper was more genotoxic in the neutral version, iron was more genotoxic in the alkaline version of the comet assay. Copper induced the highest mutagenicity as evaluated by the MN test. Iron was not mutagenic to male mice. Iron is thought to induce more oxidative lesions than copper, which are primarily detected in the alkaline comet assay. Treatment with iron, but not with copper, induced a significant increase in the hepatic level of the respective metal, reflecting different excretion strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abalea V, Cillard J, Dubos MP et al (1999) Repair of iron-induced DNA oxidation by the flavonoid myricetin in primary rat hepatocyte cultures. Free Rad Biol Med 26(11–12):1457–1466

    Article  PubMed  CAS  Google Scholar 

  • Ahmed FE (2004) Effect of diet, life style, and other environmental/chemopreventive factors on colorectal cancer development, and assessment of the risks. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 22(2):91–147

    PubMed  CAS  Google Scholar 

  • Anderson GJ, Frazer DM (2005) Hepatic iron metabolism. Semin Liver Dis 25(4):420–432

    Article  PubMed  CAS  Google Scholar 

  • Azmi AS, Bhat SH, Hanif S et al (2006) Plant polyphenols mobilize endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for anticancer properties. FEBS Lett 580(2):533–538

    Article  PubMed  CAS  Google Scholar 

  • Beard JL (2001) Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr 131(2S–2S):568S–579S (discussion 580S)

    PubMed  CAS  Google Scholar 

  • Box HC, Dawidzik JB, Budzinski EE (2001) Free radical-induced double lesions in DNA. Free Radic Biol Med 31(7):856–868

    Article  PubMed  CAS  Google Scholar 

  • Braga C, Teixeira EC, Meira L, Wiegand F et al (2005) Elemental composition of PM10 and PM2.5 in urban environment in south Brazil. Atmos Environ 39:1801–1815

    Article  CAS  Google Scholar 

  • Brusick D, Simmon V, Rosenkranz H et al (1980) An evaluation of the Escherichia coli wp2 and wp2 uvra reverse mutation assay. Mutat Res 76:169–190

    PubMed  CAS  Google Scholar 

  • Budavari S, Smith A, Heckelman P et al (1996) The Merck Index–encyclopedia of chemicals, drugs and biological. Merck and Co., Rahway

    Google Scholar 

  • Cabantchik ZI, Breuer W, Zanninelli G et al (2005) LPI-labile plasma iron in iron overload. Best Pract Res Clin Haematol 18(2):277–287

    Article  PubMed  CAS  Google Scholar 

  • Cai L, Koropatnick J, Cherian MG (1995) Metallothionein protects DNA from copper-induced but non iron-induced cleavage in vitro. Chem Biol Interact 96:143–155

    Article  PubMed  CAS  Google Scholar 

  • Campbell JL, Hopman TL, Maxwell JA et al (2000) The Guelph PIXE software package III: alternative proton database. Nucl Instrum Methods Phys Res B 170:193–204

    Article  CAS  Google Scholar 

  • Canton JH, Heijna-Merkus E, Janus JA et al (1989) Integrated criteria document: copper: effects. Appendix to report No. 758474009. National Institute of Public Health and Environmental Protection, The Netherlands

    Google Scholar 

  • Chu WK, Mayer JW, Nicolet MA (1978) Backscattering spectrometry. Academic, New York

    Google Scholar 

  • da Silva J, Herrmann SM, Heuser V, et al (2002) Evaluation of the genotoxic effect of rutin and quercetin by comet assay and micronucleus test. Food Chem Toxicol 40(7):941–947

    Article  PubMed  CAS  Google Scholar 

  • De Freitas JM, Meneghini R (2001) Iron and its sensitive balance in the cell. Mutat Res 475(1–2):153–159

    PubMed  Google Scholar 

  • Dias JF, Bulla A, Yoneama ML (2002) Charging effects in thick insulating samples. Nucl Instrum Methods Phys Res B 189:72

    Article  CAS  Google Scholar 

  • Dunkel VC, San RH, Seifried HE et al (1999) Genotoxicity of iron compounds in Salmonella typhimurium and L5178Y mouse lymphoma cells. Environ Mol Mutagen 33(1):28–41

    Article  PubMed  CAS  Google Scholar 

  • Franke SIR, Pra D, da Silva J et al (2005a) Possible repair action of vitamin C on DNA damage induced by methyl methanesulfonate, cyclophosphamide, FeSO4 and CuSO4 in mouse blood cells in vivo. Mutat Res/Genet Toxicol Environ Mutagen 583(1):75–84

    Article  CAS  Google Scholar 

  • Franke SIR, Pra D, Erdtmann B et al (2005b) Influence of orange juice over the genotoxicity induced by alkylating agents: an in vivo analysis. Mutagenesis 20(4):279–283

    Article  PubMed  CAS  Google Scholar 

  • Franke SIR, Pra D, Dias JF et al (2006) Influence of orange juice in the levels and in the genotoxicity of iron and copper. Food Chem Toxicol 44(3):425–435

    Article  PubMed  CAS  Google Scholar 

  • Fredriksson A, Schroder N, Eriksson P et al (1999) Neonatal iron exposure induces neurobehavioural dysfunctions in adult mice. Toxicol Appl Pharmacol 159(1):25–30

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto Y, Ohtsuka S, Miyashita H et al (2005) Effect of tetrahydrobiopterin on copper-mediated DNA oxidation: its prooxidant property. J Clin Biochem Nutr 36(2):51–57

    Article  CAS  Google Scholar 

  • Guecheva TN, Henriques JAP, Erdtmann B (2001) Genotoxic effects of copper sulphate in freshwater planarian in vivo, studied with the single-cell gel test (comet assay). Mutat Res 497(1–2):19–27

    PubMed  CAS  Google Scholar 

  • Halliwell B, Guterridge JMC (2000) Free radicals in biology and medicine. Oxford University Press, New York

    Google Scholar 

  • Hartmann A, Agurell E, Beevers C et al (2003) Recommendations for conducting the in vivo alkaline comet assay. 4th International Comet Assay Workshop. Mutagenesis 18(1):45–51

    Article  PubMed  CAS  Google Scholar 

  • Heidelberger C, Freeman AE, Pienta RJ et al (1983) Cell transformation by chemical agents—a review and analysis of the literature: a report of the U.S. Environmental Protection Agency Gene-Tox Program. Mutat Res 114(3):283–385

    PubMed  CAS  Google Scholar 

  • Institute of medicine (IOM) (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, molybdenum, nickel, silicon, vanadium and zinc. Food and Nutrition Board, National Academy Press, Washington

    Google Scholar 

  • Johansson SA, Campbell JL, Malmqvist KG (1995) Particle-induced x-ray emission spectrometry (PIXE). Wiley, New York

    Google Scholar 

  • Kern AL, Bonatto D, Dias JF et al (2004) The importance of yeast Alr proteins in cadmium detoxification as indicated by particle-induced X-ray emission and phenotypic analyses. X-Ray Spectrometry 10.1002/xrs.835

  • Kruszewski M (2003) Labile iron pool: the main determinant of cellular response to oxidative stress. Mutat Res 531(1–2):81–92

    PubMed  CAS  Google Scholar 

  • Lee WR, Abrahamson S, Valencia R et al (1983) The sex-linked recessive lethal test for mutagenesis in Drosophila melanogaster: a report of the U.S. Environmental Protection Agency Gene-Tox Program. Mutat Res 123(2):183–279

    PubMed  CAS  Google Scholar 

  • Leifer Z, Kada T, Mandel M et al (1981) An evaluation of tests using DNA repair-deficient bacteria for predicting genotoxicity and carcinogenicity: a report of the U.S. EPA’s Gene-TOX Program. Mutat Res 87(3):211–297

    PubMed  CAS  Google Scholar 

  • Lewis RJ (1996) Sax’s dangerous properties of industrial materials. Van Nostrand Reinhold, New York

    Google Scholar 

  • Linder MC (2001) Copper and genomic stability in mammals. Mutat Res 475(1–2):141–152

    PubMed  CAS  Google Scholar 

  • Lloyd DR, Phillips DH, Carmichael PL (1997) Generation of putative intrastrand cross-links and strand breaks in DNA by transition metal ion-mediated oxygen radical attack. Chem Res Toxicol 10(4):393–400

    Article  PubMed  CAS  Google Scholar 

  • Lloyd DR, Carmichael PL, Phillips DH (1998) Comparison of the formation of 8-hydroxy-2’-deoxyguanosine and single- and double-strand breaks in DNA mediated by Fenton reactions. Chem Res Toxicol 11(5):420–427

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Cao L, Kawabata T et al (1998) Cupric nitrilotriacetate induces oxidative DNA damage and apoptosis in human leukemia HL-60 cells. Free Radic Biol Med 25(4–5):568–575

    Article  PubMed  CAS  Google Scholar 

  • MacGregor JT, Heddle JA, Hite M et al (1987) Guidelines for the conduct of micronucleus assays in mammalian bone marrow erythrocytes. Mutat Res 189(2):103–112

    Article  PubMed  CAS  Google Scholar 

  • Maxwell JA, Campbell JL, Teesdale WJ (1989) The Guelph PIXE software package. Nucl Instrum Methods Phys Res B 43:218–230

    Article  Google Scholar 

  • Maxwell JA, Teesdale WJ, Campbell JL (1995) The Guelph PIXE software package II. Nucl Instrum Methods Phys Res B 95:407–421

    Article  CAS  Google Scholar 

  • Meneghini R (1997) Iron homeostasis, oxidative stress, and DNA damage. Free Radic Biol Med 23(5):783–792

    Article  PubMed  CAS  Google Scholar 

  • Nadin S, Vargas-Roig L, Ciocca D (2001) A silver staining method for single-cell gel assay. J Histochem Cytochem 49(9):1183–1186

    PubMed  CAS  Google Scholar 

  • Nakano M, Kawanishi Y, Kamohara S et al (2003) Oxidative DNA damage (8-hydroxydeoxyguanosine) and body iron status: a study on 2507 healthy people. Free Radic Biol Med 35(7):826–832

    Article  PubMed  CAS  Google Scholar 

  • Oikawa S, Kawanishi S (1998) Distinct mechanisms of site-specific DNA damage induced by endogenous reductants in the presence of iron(III) and copper(II). Biochim Biophys Acta 1399(1):19–30

    PubMed  CAS  Google Scholar 

  • Oppenheimer SJ (2001) Iron and its relation to immunity and infectious disease. J Nutr 131(2):616S–635S

    PubMed  CAS  Google Scholar 

  • Rae TD, Schmidt PJ, Pufahl RA et al (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284(5415):805–808

    Article  PubMed  CAS  Google Scholar 

  • Rojas E, Herrera LA, Poirier LA et al (1999) Are metals dietary carcinogens? Mutat Res 443(1–2):157–181

    PubMed  CAS  Google Scholar 

  • Saleha Banu B, Ishaq M, Danadevi K et al (2004) DNA damage in leukocytes of mice treated with copper sulfate. Food Chem Toxicol 42(12):1931–1936

    Article  PubMed  CAS  Google Scholar 

  • Schumann K (2001) Safety aspects of iron in food. Ann Nutr Metab 45(3):91–101

    Article  PubMed  CAS  Google Scholar 

  • Singh NP, Muller CH, Berger RE (2003) Effects of age on DNA double-strand breaks and apoptosis in human sperm. Fertil Steril 80(6):1420

    Article  PubMed  Google Scholar 

  • Tice RR, Agurell E, Anderson D et al (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35(3):206–221

    Article  PubMed  CAS  Google Scholar 

  • Tkeshelashvili LK, McBride T, Spence K et al (1991) Mutation spectrum of copper-induced DNA damage. J Biol Chem 266(10):6401–6406

    PubMed  CAS  Google Scholar 

  • Troppmann L, Gray-Donald K, Johns T (2002) Supplement use: is there any nutritional benefit? J Am Diet Assoc 102(6):818–825

    Article  PubMed  Google Scholar 

  • Tucker JD, Auletta A, Cimino MC et al (1993) Sister-chromatid exchange: second report of the Gene-Tox Program. Mutat Res 297(2):101–180

    PubMed  CAS  Google Scholar 

  • Uriu-Adams JY, Rucker RB, Commisso JF et al (2005) Diabetes and dietary copper alter 67Cu metabolism and oxidant defense in the rat. J Nutr Biochem 16(5):312

    Article  PubMed  CAS  Google Scholar 

  • Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208

    Article  PubMed  CAS  Google Scholar 

  • Vig BK (1982) Soybean (Glycine max [L.] merrill) as a short-term assay for study of environmental mutagens: a report of the U.S. Environmental Protection Agency Gene-Tox Program. Mutat Res 99(3):339–347

    CAS  Google Scholar 

  • Vyoral D, Petrak J (2005) Hepcidin: a direct link between iron metabolism and immunity. Int J Biochem Cell Biol 37(9):1768

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K, Kawanishi S (1989) Hydroxyl free radical is not the main active species in site-specific DNA damage induced by copper (II) ion and hydrogen peroxide. J Biol Chem 264(26):15435–15440

    PubMed  CAS  Google Scholar 

  • Yoshino M, Haneda M, Naruse M et al (1999) Prooxidant activity of flavonoids: copper-dependent strand breaks and the formation of 8-hydroxy-2′-deoxyguanosine in DNA. Mol Genet Metab 68(4):468–472

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann FK, von Borstel RC, von Halle ES et al (1984) Testing of chemicals for genetic activity with Saccharomyces cerevisiae: a report of the U.S. Environmental Protection Agency Gene-Tox Program. Mutat Res 133(3):199–244

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr Christine C. Gaylarde for critically reading the manuscript. UNISC, CNPq, CAPES and GENOTOX-Royal supported the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Antonio Pêgas Henriques.

Additional information

Daniel Prá and Silvia Isabel Rech Franke have contributed equally in conducting the experiment, analyzing data and writing the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prá, D., Franke, S.I.R., Giulian, R. et al. Genotoxicity and mutagenicity of iron and copper in mice. Biometals 21, 289–297 (2008). https://doi.org/10.1007/s10534-007-9118-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-007-9118-3

Keywords

Navigation