Skip to main content
Log in

Antioxidant system activation by mercury in Pfaffia glomerata plantlets

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Oxidative stress caused by mercury (Hg) was investigated in Pfaffia glomerata plantlets grown in nutrient solution using sand as substrate. Thirty-day-old acclimated plants were treated for 9 days with four Hg levels (0, 1, 25 and 50 μM) in the substrate. Parameters such as growth, tissue Hg concentration, toxicity indicators (δ-aminolevulinic acid dehidratase, δ-ALA-D, activity), oxidative damage markers (TBARS, lipid peroxidation, and H2O2 concentration) and enzymatic (superoxide dismutase, SOD, catalase, CAT, and ascorbate peroxidase, APX) and non-enzymatic (non-protein thiols, NPSH, ascorbic acid, AsA, and proline concentration) antioxidants were investigated. Tissue Hg concentration increased with Hg levels. Root and shoot fresh weight and δ-ALA-D activity were significantly decreased at 50 μM Hg, and chlorophyll and carotenoid concentration were not affected. Shoot H2O2 concentration increased curvilinearly with Hg levels, whereas lipid peroxidation increased at 25 and 50 μM Hg, respectively, in roots and shoots. SOD activity showed a straight correlation with H2O2 concentration, whereas CAT activity increased only in shoots at 1 and 50 μM Hg. Shoot APX activity was either decreased at 1 μM Hg or increased at 50 μM Hg. Conversely, root APX activity was only increased at 1 μM Hg. In general, AsA, NPSH and proline concentrations increased upon addition of Hg, with the exception of proline in roots, which decreased. These changes in enzymatic and non-enzymatic antioxidants had a significant protective effect on P. glomerata plantlets under mild Hg-stressed conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Aina R, Labra M, Fumagalli P, Vannini C, Marsoni M (2007) Thiol-peptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environ Exp Bot 59:381–392

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  Google Scholar 

  • Backor M, Fahselt D, Wu CT (2004) Free proline content is positively correlated with copper tolerance of the lichen photobiont Trebouxia erici (Chlorophyta). Plant Sci 167:151–157

    Article  CAS  Google Scholar 

  • Barbosa NVB, Rocha JBT, Zeni G, Emanuelli T, Beque MC, Braga AL (1998) Effect of organic forms of selenium on δ-aminolevulinate dehydratase from liver, kidney and brain of adult rats. Toxicol Appl Pharmacol 149:243–253

    Article  CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Tear ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cargnelutti D, Tabaldi LA, Spanevello RM, Jucoski GO, Battisti V, Redin M, Linares CEB, Dressler VL, Flores EMM, Nicoloso FT, Morsch VM, Schetinger MRC (2006) Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere 65:999–1006

    Article  CAS  PubMed  Google Scholar 

  • Carneiro MAC, Siqueira JO, Moreira FMS (2002) Comportamento de espécies herbáceas em misturas de solo com diferentes graus de contaminação com metais pesados. Pesq Agropec Bras 37:1629–1638

    Google Scholar 

  • Cavallini A, Natali L, Durante M, Maserti B (1999) Mercury uptake, distribution and DNA affinity in durum wheat (Triticum durum Desf.) plants. Sci Total Environ 243:119–127

    Article  Google Scholar 

  • Chen L, Yang L, Wang Q (2009) In vivo phytochelatins and Hg-phytochelatin complexes in Hg-stressed Brassica chinensis L. Metallomics 1:101–106

    Article  CAS  Google Scholar 

  • Cho U, Park J (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156:1–9

    Article  CAS  PubMed  Google Scholar 

  • Demiral T, Turkan I (2004) Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? J Plant Physiol 161:1089–1100

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL (1959) Tissue sulphydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  • El-Moshaty FIB, Pike SM, Novacky AJ, Sehgal OP (1993) Lipid peroxidation and superoxide production in cowpea (Vigna unguiculata) leaves infected with tobacco ringspot virus or southern bean mosaic virus. Physiol Mol Plant Pathol 43:109–119

    Article  CAS  Google Scholar 

  • Gibson KD, Neuberger A, Scott JJ (1955) The purification and properties of delta-aminolevulinic acid dehydratase. Biochem J 61:618–629

    CAS  PubMed  Google Scholar 

  • Gonçalves JF, Tabaldi LA, Cargnelutti D, Pereira LB, Maldaner J, Becker AG, Rossato LV, Rauber R, Bagatini MD, Bisognin DA, Schetinger MRC, Nicoloso FT (2009) Cadmium-induced oxidative stress in two potato cultivars. Biometals 22:779–792

    Article  PubMed  Google Scholar 

  • Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  • Horemans N, Foyer CH, Potters G, Asard H (2000) Ascorbate function and associated transport systems in plants. Plant Physiol Biochem 38:531–540

    Article  CAS  Google Scholar 

  • Iglesia-Turiño S, Febrero A, Jauregui O, Caldelas C, Araus JL, Bort J (2006) Detection and quantification of unbound phytochelatin 2 in plant extracts of Brassica napus grown with different levels of mercury. Plant Physiol 142:742–749

    Article  PubMed  Google Scholar 

  • Jacques-Silva MC, Nogueira CW, Broch LC, Flores EMM, Rocha JBT (2001) Diphenyl diselenide and ascorbic acid changes deposition of selenium and ascorbic acid in liver and brain of mice. Pharmacol Toxicol 88:119–125

    Article  CAS  PubMed  Google Scholar 

  • Jaffe EK, Kervinen J, Dunbrack J, Litwin S, Martins J, Scarrow RC, Volin M, Yeung AT, Yonn E (2000) Porphobilinogen synthase from pea: expression from an artificial gene, kinetic characterization, and novel implications for subunit interactions. Biochemistry 39:9018–9029

    Article  PubMed  Google Scholar 

  • Khan NA, Singh S, Anjum NA, Nazar R (2008) Cadmium effects on carbonic anhydrase, photosynthesis, dry mass and antioxidative enzymes in wheat (Tritucum aestivum) under low and sufficient Zn. J Plant Interact 3:31–37

    Article  CAS  Google Scholar 

  • Khedr AHA, Abbas MA, Wahid AAA, Quick WP, Abogadallah GM (2003) Proline induces the expression of salt-stress responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. J Exp Bot 54:2553–2562

    Article  CAS  PubMed  Google Scholar 

  • Kishor PBK, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, Rao KS et al (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    CAS  Google Scholar 

  • Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787

    Article  CAS  PubMed  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and simple assay for superoxide dismutase. J Biol Chem 244:6049–6055

    Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nicoloso FT, Erig AC, Martins CF, Russowski D (2001) Micropropagação de ginseng brasileiro (Pfaffia glomerata (Spreng.) Pedersen). Braz J Med Plants 3:11–18

    CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and gluthatione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol Med 31:1287–1312

    Google Scholar 

  • Ortega-Villasante C, Hernández LE, Rellán-Álvarez R, Del Campo FF, Carpena-Ruiz RO (2007) Rapid alteration of cellular redox homeostasis upon exposure to cadmium and mercury in alfalfa seedlings. New Phytol 176:96–107

    Article  CAS  PubMed  Google Scholar 

  • Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66:379–422

    Article  Google Scholar 

  • Patra M, Bhowmik N, Bandopadhyay B, Sharma A (2004) Comparison of mercury systems and the development of genetic tolerance. Environ Exp Bot Rev 52:199–223

    Article  CAS  Google Scholar 

  • Pereira LB, Tabaldi LA, Gonçalves JF, Jucoski JO, Pauletto MM, Weis SN, Nicoloso FT, Borher D, Rocha JBT, Schetinger MRC (2006) Effect of aluminum on d-aminolevulinic acid dehydratase (ALA-D) and the development of cucumber (Cucumis sativus). Environ Exp Bot 57:106–115

    Article  CAS  Google Scholar 

  • Rellán-Álvarez R, Ortega-Villasante C, Álvarez-Fernández A, Del Campo FF, Hernández LE (2006) Stress responses of Zea mays to cadmium and mercury. Plant Soil 279:41–50

    Article  Google Scholar 

  • Rocha JBT, Pereira ME, Emanuelli T, Christofari RS, Souza D (1995) Effects of methylmercury exposure during the second stage of rapid postnatal brain growth on delta-aminolevulinic acid dehydratase (ALA-D) activity in brain, liver, kidney and blood of suckling rats. Toxicology 100:27–37

    Article  CAS  PubMed  Google Scholar 

  • Sassa S (1982) Delta-aminolevulinic acid dehydratase assay. Enzyme 28:133–145

    CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  CAS  PubMed  Google Scholar 

  • Skrebsky EC, Tabaldi LA, Pereira LB, Rauber R, Maldaner J, Cargnelutti D, Gonçalves JF, Castro GY, Schetinger MRC, Nicoloso FT (2008) Effect of cadmium on growth, micronutrient concentration, and δ-aminolevulinic acid dehydratase and acid phosphatase activities in plants of Pfaffia glomerata. Braz J Plant Physiol 20:285–294

    Article  Google Scholar 

  • Tabaldi LA, Cargnelutti D, Gonçalves JF, Pereira LB, Castro GY, Maldaner J, Rauber R, Rossato LV, Bisognin DA, Schetinger MRC, Nicoloso FT (2009) Oxidative stress is an early symptom triggered by aluminum in A-sensitive potato plantlets. Chemosphere 76:1402–1409

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi SF, Bersani-Amado CA, Sudo LS, Assef SMC, Oga S (1997) Effect of Pfaffia iresinoides on the experimental inflammatory process in rats. Phytother Res 11:568–571

    Article  CAS  Google Scholar 

  • Voetberg GS, Sharp RE (1991) Growth of the maize primary root in low water potentials. III. Roles of increased proline depositions in osmotic adjustment. Plant Physiol 96:125–130

    Article  Google Scholar 

  • Zang WH, Tyerman SD (1999) Inhibition of water channels by HgCl2 in intact wheat root cells. Plant Physiol 120:849–857

    Article  Google Scholar 

  • Zhou ZS, Wang SJ, Yang ZM (2008) Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants. Chemosphere 70:1500–1509

    Article  CAS  PubMed  Google Scholar 

  • Zhou ZS, Guo K, Elbaz AA, Yang ZM (2009) Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environ Exp Bot 65:27–34

    Article  CAS  Google Scholar 

  • Zhu Z, Wei G, Li J, Qian Q, Yu J (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. T. Nicoloso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calgaroto, N.S., Castro, G.Y., Cargnelutti, D. et al. Antioxidant system activation by mercury in Pfaffia glomerata plantlets. Biometals 23, 295–305 (2010). https://doi.org/10.1007/s10534-009-9287-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-009-9287-3

Keywords

Navigation