biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 59:83-91, 2015 | DOI: 10.1007/s10535-014-0474-x

Marker-assisted breeding for TaALMT1, a major gene conferring aluminium tolerance to wheat

B. J. Soto-Cerda1,2, C. Inostroza-Blancheteau2,3, M. Mathías4, E. Peñaloza5, J. Zuñiga4, G. Muñoz6, Z. Rengel7, H. Salvo-Garrido1,4,*
1 Agriaquaculture Nutritional Genomic Center CGNA, Genomics and Bioinformatics Unit, Temuco, Chile
2 Núcleo de Investigación en Producción Alimentaría, Facultad de Recursos Naturales, Temuco, Chile
3 Escuela de Agronomía, Universidad Católica de Temuco, Temuco, Chile
4 Centro Regional de Investigación Carillanca, INIA, Temuco, Chile
5 Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
6 Facultad de Ciencias Biológicas, Universidad Andrés Bello, Talcahuano, Chile
7 School of Earth and Environment, University of Western Australia, Crawley, Australia

Aluminium toxicity in acid soils is the main limitation to crop production worldwide. In wheat (Triticum aestivum L.), the Al-activated malate transporter (TaALMT1) gene located on chromosome 4DL is associated with malate efflux and Al-tolerance. To introgress Al-tolerance from the breeding line CAR3911 into the high yielding Al-sensitive cultivar Kumpa-INIA, phenotypic and molecular characterizations of gene/QTL underlying Al-tolerance in CAR3911 followed by marker-assisted backcrossing (MAS-BC) were undertaken. Al-tolerant backcross (BC) lines were selected using the functional marker ALMT1-4 designed immediately upstream of the TaALMT1 coding region. Foreground and background selections using ALMT1-4 and microsatellite markers were conducted. Linkage and sequence analyses suggest that the TaALMT1 gene could underly the Al-tolerance in CAR3911, possessing the same promoter type (V) as the Al-tolerant genotypes Carazinho and ET8. The MAS-BC strategy allowed the selection of Al-tolerant lines with the smallest introgressed region (6 cM) on 4D and the highest recurrent parent genome (RPG) (98 %) covering 2 194 cM of the wheat genome. The homozygous BC3F2 line named Kumpa-INIA-TaALMT1 expressed a 3-fold higher Al-tolerance than its isogenic line Kumpa-INIA at 40 μM Al in the hydroponic solution, and similarly to CAR3911 and Carazinho. The MAS-BC strategy was successful for the introgression of the TaALMT1 gene into Kumpa-INIA in only three BC generations, shortening the breeding cycle to 24 months, which promises to increase wheat production and a greater yield stability in the acid soils of Southern Chile.

Keywords: acid soils; backcross lines; gene expression; introgression; malate transporter; microsatellite markers
Subjects: marker-assisted selection; aluminum; gene expression; microsatellite markers; malate transporter; linkage mapping; wheat

Received: February 13, 2014; Revised: April 16, 2014; Accepted: August 18, 2014; Published: January 1, 2015  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Soto-Cerda, B.J., Inostroza-Blancheteau, C., Mathías, M., Peñaloza, E., Zuñiga, J., Muñoz, G., Rengel, Z., & Salvo-Garrido, H. (2015). Marker-assisted breeding for TaALMT1, a major gene conferring aluminium tolerance to wheat. Biologia plantarum59(1), 83-91. doi: 10.1007/s10535-014-0474-x
Download citation

Supplementary files

Download filebpl-201501-0010_S1.pdf

File size: 467.5 kB

References

  1. Basu, U., McDonald, J., Archamhault, D., Good, A., Briggs, K., Aung, T., Taylor, G.: Genetic and physiological analysis of doubled-haploid, aluminium resistance lines of wheat provide evidence for the involvement of a 23 kD, root exudate polypeptide in mediating resistance. - Plant Soil 196: 283-288, 1997. Go to original source...
  2. Bertrand, C., Collar, Y., Mackill, D.J.: Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. - Phil. Trans. roy. Soc. London B. 363: 557-572, 2008. Go to original source...
  3. Cai, S., Bai, G.H., Zhang, D.: Quantitative trait loci for aluminium resistance in Chinese wheat landrace FSW. - Theor. appl. Genet. 117: 49-56, 2008. Go to original source...
  4. Delhaize, E., Higgins, T.J.V., Randall, P.J.: Aluminium tolerance in wheat: analysis of polypeptides in the root apices of tolerant and sensitive genotypes. - In: Wright, R.J., Baligar, V.C., Murrmann, R.P. (ed.): Plant-Soil Interactions at Low pH. Developments in Plant and Soil Sciences. Vol. 45. Pp. 1071-1079. Springer, Dordrecht 1991. Go to original source...
  5. Frisch, M., Bohn, M., Melchinger, A.: Comparison of selection strategies for marker-assisted backcrossing of a gene. - Crop Sci. 39: 1295-1301, 1999. Go to original source...
  6. Gallardo, F., Borie, F., Alvear, L., Bae, E.V.: Evaluation of aluminium tolerance of three barley cultivars by two short-term screening methods and field experiments. - Soil Sci. Plant Nutr. 45: 713-719, 1999. Go to original source...
  7. Gupta, P., Balyan, H., Edwards, K., Isaac, P., Korzun, V., Röder, M., Gautier, M., Joudrier, P., Schlatter, A., Dubcovsky, J., De la Peña, R., Khairallah, M., Penner, G., Hayden, M., Sharp, P., Keller, B., Wang, R., Hardouin, J., Jack, P., Leroy, P.: Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. - Theor. appl. Genet. 105: 413-422, 2002. Go to original source...
  8. Hede, A.R., Skovmand, B., Ribaut, J.M., González de León, D., Stolen, O.: Evaluation of aluminium tolerance in a spring rye collection by hydroponic screening. - Plant Breed. 121: 241-248, 2002. Go to original source...
  9. Hu, S.W., Bai, G.H., Carver, B., Zhang, D.: Diverse origins of aluminium-resistance sources in wheat. - Theor. appl. Genet. 118: 29-41, 2008. Go to original source...
  10. Inostroza-Blancheteau, C., Rengel, Z., Alberdi, M., Mora, M.L., Aquea, F., Arce-Johnson, P., Reyes-Díaz, M.: Molecular and physiological strategies to increase aluminium resistance in plants. - Mol. Biol. Rep. 39: 2069-2079, 2012. Go to original source...
  11. Jobet, C., Hewstone, C.: Kumpa-INIA: new winter wheat variety for Southern Chile. - Chil. J. agr. Res. 63: 81-86, 2003. Go to original source...
  12. Khan, I.A., Procunier, J.D., Humpreys, D.G., Tranquilli, G., Schlatter, A.R., Marcucci-Poltri, S., Frohberg, R., Dubcovsky, J.: Development of PCR-based markers for a high grain protein content gene from Triticum turgidum ssp. dicoccoides transferred to bread wheat. - Crop Sci. 40: 518-524, 2000. Go to original source...
  13. Kosambi, D.D.: The estimation of map distance from recombination values. - Ann. Eugen. 12: 172-175, 1944. Go to original source...
  14. Ma, J., Shen, R., Zhao, Z., Wissuwa, M., Takeuchi, Y., Ebitani, T., Yano, M.: Response of rice to Al stress and identification of quantitative trait loci for Al tolerance. - Plant Cell Physiol. 43: 652-659, 2002. Go to original source...
  15. Ma, H., Bai, G., Carver, B., Zhou, L.: Molecular mapping of a quantitative trait locus for aluminium tolerance in wheat cultivar Atlas 66. - Theor. appl. Genet. 112: 51-57, 2005. Go to original source...
  16. Martins N., Gonçalves, S., Romano, A.: Metabolism and aluminum accumulation in Plantago almogravensis and P. algarbiensis in response to low pH and aluminum stress. - Biol. Plant. 57: 325-331, 2013. Go to original source...
  17. Michelmore, R., Paran, I., Kesseli, V.: Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. - Proc. nat. Acad. Sci. USA 88: 9828-9832, 1991. Go to original source...
  18. Papernik, L., Bethea, A., Singleton, T., Magalhaes, V., Garvin, D., Kochian, L.: Physiological basis of reduced Al tolerance in ditelosomic lines of Chinese Spring wheat. - Planta 212: 829-834, 2001. Go to original source...
  19. Peñaloza, E., Martinez, J., Montenegro, A., Corcuera, L.: Response of two lupin species to phytotoxic aluminium. - Chil. J. agr. Res. 64: 127-138, 2004. Go to original source...
  20. Raman, H., Karakousis, A., Moroni, J., Raman, R., Read, B., Garvin, D., Kochian, L., Sorrells, M.: Development and allele diversity of microsatellite markers linked to the aluminium tolerance gene Alp in barley. - Aust. J. agr. Res. 54: 1315-1321, 2003. Go to original source...
  21. Raman, H., Moroni, J., Sato, K., Read, B.: Identification of AFLP and microsatellite markers linked with an aluminium tolerance gene in barley (Hordeum vulgare L.). - Theor. appl. Genet. 105: 458-464, 2002. Go to original source...
  22. Raman, H., Raman, R., Wood, R., Martin, P.: Repetitive indel markers within the ALMT1 gene conditioning aluminium tolerance in wheat (Triticum aestivum L.). - Mol. Breed. 18: 171-183, 2006. Go to original source...
  23. Raman, H., Ryan, P.R., Raman, R., Stodart, B.J., Zhang, K., Martin, P., Wood, R., Sasaki, T., Yamamoto, Y., Mackay, M., Hebb, D.M., Delhaize, E.: Analysis of TaALMT1 traces the transmission of aluminium resistance in cultivated common wheat (Triticum aestivum L.). - Theor. appl. Genet. 116: 343-354, 2008. Go to original source...
  24. Raman, H., Zhang, K., Cakir, M., Appels, R., Garvin, D., Maron, L., Kochian, L., Moroni, J., Raman, R., Imtiaz, M., Drake-Brockman, F., Waters, I., Martin, P., Sasaki, T., Yamamoto, Y., Matsumoto, H., Hebb, D., Delhaize, E., Ryan, P.: Molecular characterization and mapping of ALMT1, the aluminium-tolerance gene of bread wheat (Triticum aestivum L.). - Genome 48: 781-791, 2005. Go to original source...
  25. Raman, H., Stodart, B., Ryan, P.R., Delhaize, E., Emebiri, L., Raman, R., Coombes, N., Milgate, A.: Genome-wide association analyses of common wheat (Triticum aestivum L.) germoplasm identifies multiple loci for aluminum resistance. - Genome 53: 957-966, 2010. Go to original source...
  26. Ribaut, J.M., Hoisington, D.: Marker-assisted selection: new tools and strategies. - Trends Plant Sci. 3: 236-239, 1998. Go to original source...
  27. Riede, C., Anderson, J.: Linkage of RFLP markers to an aluminium tolerance gene in wheat. - Crop Sci. 36: 905-909, 1996. Go to original source...
  28. Röder, M., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M., Leroy, P., Ganal, M.: A microsatellite map of wheat. - Genetics 149: 2007-2023, 1998. Go to original source...
  29. Ryan, P., Raman, H., Gupta, S., Horst, W., Delhaize, E.: A second mechanism for aluminium resistance in wheat relies on the constitutive efflux of citrate from roots. - Plant Physiol. 149: 340-351, 2009. Go to original source...
  30. Ryan, P.R, Raman, H., Gupta, S., Sasaki, T., Yamamoto, Y., Delhaize, E.: The multiple origins of aluminium resistance in hexaploid wheat include Aegilops tauschii and more recent cis mutations to TaALMT1. - Plant J. 64: 446-455, 2010. Go to original source...
  31. Sasaki, T., Yamamoto, Y., Ezaki, B., Katsuhara, M., Ahn, S.J., Ryan, P., Delhaize, E.: A wheat gene encoding an aluminium-activated malate transporter. - Plant J. 37: 645-653, 2004. Go to original source...
  32. Sasaki, T., Ryan, P., Delhaize, E., Hebb, D., Ogihara, Y., Kawaura, K., Noda, K., Kojima, T., Toyoda, A., Matsumoto, H., Yamamoto, Y.: Sequence upstream of the wheat (Triricum aestivum L.) ALMT1 gene and its relationship to aluminium resistance. - Plant Cell Physiol. 47: 1343-1354, 2006. Go to original source...
  33. Servin, B., Hospital, F.: Optimal positioning of markers to control genetic background in marker assisted backcrossing. - J. Hered. 93: 214-217, 2002. Go to original source...
  34. Somers, D., Gustafson, J.: The expression of aluminium stress induced polypeptides 1 in a population segregating for aluminium tolerance in wheat (Triticum aestivum L.). - Genome 38: 1213-1220, 1995. Go to original source...
  35. Somers, D., Isaac, P., Edwards, K.: A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). - Theor. appl. Genet. 109: 1105-1114, 2004. Go to original source...
  36. Sourdille, P., Charmet, G., Trottet, M., Tixier, H., Boeuf, C.: Linkage between RFLP molecular markers and the dwarfing genes Rtht and Rht-D1 in wheat. - Hereditas 128: 41-46, 1998. Go to original source...
  37. Tester, M., Langridge, P.: Breeding technologies to increase crop production in a changing world. - Science 327: 818-822, 2010. Go to original source...
  38. Torada, A., Koike, M., Mochida, K., Ogihara, Y.: SSR-based linkage map with new markers using intraspecific population of common wheat. - Theor. appl. Genet. 112: 1042-1051, 2006. Go to original source...
  39. Van Berloo, R.: GGT 2.0: versatile software for visualization and analysis of genetic data. - J. Hered. 99: 232-236, 2008. Go to original source...
  40. Van Ooijen, J.W.: JoinMap® Versión 4.0: Software for the Calculation of Genetic Linkage Maps in Experimental Populations. - Kyazma BV, Wageningen 2006.
  41. Wood, S., Sebastian, K., Scherr, S.J.: Pilot Analysis of Global Ecosystems: Agroecosystems. - Rosen, Washington 2000.
  42. Zheng, S., Ma, J., Matsumoto, H.: High aluminium resistance in buckwheat. I. Al-induced specific secretion of oxalic acid from root tips. - Plant Physiol. 117: 745-751, 1998. Go to original source...
  43. Zheng, S.J.: Crop production on acidic soils: overcoming aluminium toxicity and phosphorus deficiency. - Ann. Bot. 106: 183-184, 2010. Go to original source...
  44. Zhou, L., Bai, G., Ma, H., Carver, B.: Quantitative trait loci for aluminium resistance in wheat. - Mol. Breed. 9: 153-161, 2007. Go to original source...